Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Fablet, L.*; Pdrot, M.*; Choueikani, F.*; Kieffer, I.*; Proux, O.*; Pierson-Wickmann, A.-C.*; Cagniart, V.*; Yomogida, Takumi; Marsac, R.*
Environmental Science; Nano, 12(5), p.2815 - 2827, 2025/05
Times Cited Count:0 Percentile:0.00(Chemistry, Multidisciplinary)Nickel is an omnipresent trace element in the environment. Due to its high affinity for iron oxide nanoparticles, its elimination from soils and water by these nanoparticles represents an interesting strategy, specially by magnetites, which is naturally present in the environment. However, the interactions between Ni and magnetite are poorly understood, because of the difficulty to control the stoichiometry (Fe(II)-to-Fe(III) ratio) of magnetite. The behavior of Ni in the presence of magnetite nanoparticles with different stoichiometries, in aqueous solution and inert atmosphere, are probed by adsorption experiments and X-ray Absorption Spectroscopy. This study helps predicting the interactions between Ni and magnetite in environmental conditions, which can be used for the development of efficient remediation strategies.
Arai, Yoichi; Watanabe, So; Nakahara, Masaumi; Funakoshi, Tomomasa; Hoshino, Takanori; Takahatake, Yoko; Sakamoto, Atsushi; Aihara, Haruka; Hasegawa, Kenta; Yoshida, Toshiki; et al.
Progress in Nuclear Science and Technology (Internet), 7, p.168 - 174, 2025/05
The Japan Atomic Energy Agency (JAEA) has been conducting a project named "Systematic Treatment of RAdioactive liquid waste for Decommissioning (STRAD)" project since 2018 for fundamental and practical studies for treating radioactive liquid wastes with complicated compositions. Fundamental studies have been conducted using genuine liquid wastes accumulated in a hot laboratory of the JAEA called the Chemical Processing Facility (CPF), and treatment procedures for all liquid wastes in CPF were successfully designed on the results obtained. As the next phase of the project, new fundamental and practical studies on primarily organic liquid wastes accumulated in different facilities of JAEA are in progress. This paper reviews the representative achievements of the STRAD project and introduces an overview of ongoing studies.
Takatori, Sayuri*; Pimon, M.*; Pollitt, S.*; Bartokos, M.*; Beeks, K.*; Grneis, A.*; Hiraki, Takahiro*; Homma, Tetsuo*; Hosseini, N.*; Leitner, A.*; et al.
New Journal of Physics (Internet), 27(4), p.043024_1 - 043024_10, 2025/04
Recent reports on laser excitation of the low-energy thorium-229 (Th) nuclear isomeric state in calcium fluoride single crystals render this system a promising candidate for a solid-state nuclear clock. However, experimental characterization of the microscopic ion arrangement around the doped
Th and its electronic charge state, crucial for the precise control of the clock transition and assessing the solid-state clock's performance, remains an unresolved task. This study uses X-ray absorption fine structure spectroscopy of
Th:CaF
to investigate the charge state and coordination environment of doped
Th. The results indicate that
Th is doped with a 4+ valence at the substitutional site of the Ca
ion, with charge compensated provided by two F
ions located at interstitial sites adjacent to
Th.
Yomogida, Takumi; Takahashi, Yoshio*
Chikyu Kagaku, 59(1), p.1 - 10, 2025/03
X-ray absorption fine structure XAFS spectroscopy techniques, which are applicable to almost all elements, provide information on elemental valence and local structure with high elemental selectivity and high sensitivity. It has become an indispensable method in space geochemistry and environmental chemistry. This review presents examples of the application of fluorescence XAFS methods to elements that are difficult to detect by conventional methods, and examples where new chemical species information has been obtained by increasing the energy resolution of the X-ray fluorescence (XRF) detection system to obtain XAFS.
Scaria, J.*; Pdrot, M.*; Fablet, L.*; Yomogida, Takumi; Nguyen, T. T.*; Sivry, Y.*; Catrouillet, C.*; Pradas del Real, A. E.*; Choueikani, F.*; Vantelon, D.*; et al.
Environmental Science & Technology, 59(11), p.5747 - 5755, 2025/03
Times Cited Count:0 Percentile:0.00(Engineering, Environmental)Understanding and predicting the interaction mechanisms between chromium and magnetite is of particular interest to elucidate the biogeochemical behavior of Cr in the environment and to develop optimal soil remediation and water treatment strategies. However, while the elimination of the most toxic form of (Cr(VI)) by its reduction to Cr(III) has widely been documented, elucidating the exact mechanism involved in Cr(III) sorption to magnetite has attracted less attention. This study examined the interaction of Cr(III) solution with 10 nm-sized magnetites, whose stoichiometries were carefully defined and preserved in anaerobic conditions. This study reveals the joint effects of pH and magnetite stoichiometry on Cr(III) sorption mechanism, and that Cr(III)-(hydr)oxide precipitation is not necessarily the driving process of Cr(III) elimination from solutions. These results will help predict the fate and transport of chromium, as well as developing magnetite-based chromium remediation processes.
Yomogida, Takumi
Hoshako, 38(1), p.19 - 25, 2025/01
High-energy-resolution fluorescence detection-X-ray absorption near-edge structure (HERFD-XANES) spectroscopy has enabled us to discuss the electronic structure of actinide compounds in more detail than with conventional XANES spectroscopy. We are conducting research with the aim of contributing to the prediction of the migration behavior of trace actinide elements in the environment by performing actinide speciation in various environmental samples. In this paper, we introduce the content of the discussion of the electronic state of U from the perspective of basic science, which is important for advancing application of HERFD-XANES spectroscopy to environmental science.
Suzuki, Yuri*; Hiradate, Shuntaro*; Koarashi, Jun; Atarashi-Andoh, Mariko; Yomogida, Takumi; Kanda, Yuki*; Nagano, Hirohiko*
Soil (Internet), 11(1), p.35 - 49, 2025/01
Times Cited Count:0 Percentile:0.00(Soil Science)Takahashi, Yoshio*; Yamaguchi, Akiko; Yomogida, Takumi
Treatise on Geochemistry, 3rd edition, Vol.6, p.105 - 150, 2025/00
With the recent development of measurement techniques, new approaches to the environmental geochemistry of radionuclides have been applied for various research targets. In this review article, several topics within the last 10-15 years in the field of environmental geochemistry of radionuclides have been discussed. In particular, this article mainly focused on two topics, (i) studies on the migration of radionuclides emitted by the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in 2011 and (ii) the development of X-ray absorption fine structure (XAFS) spectroscopy and its application to the geochemical processes of radionuclides.
Shimokita, Keisuke*; Yamamoto, Katsuhiro*; Miyata, Noboru*; Shibata, Motoki*; Nakanishi, Yohei*; Arakawa, Masato*; Takenaka, Mikihito*; Kida, Takumitsu*; Tokumitsu, Katsuhisa*; Tanaka, Ryo*; et al.
Langmuir, 40(30), p.15758 - 15766, 2024/07
Times Cited Count:0 Percentile:0.00(Chemistry, Multidisciplinary)Aoyagi, Noboru; Motokawa, Ryuhei; Okumura, Masahiko; Ueda, Yuki; Saito, Takumi*; Nishitsuji, Shotaro*; Taguchi, Tomitsugu*; Yomogida, Takumi; Sazaki, Gen*; Ikeda, Atsushi
Communications Chemistry (Internet), 7, p.128_1 - 128_13, 2024/06
Times Cited Count:0 Percentile:0.00(Chemistry, Multidisciplinary)Yomogida, Takumi; Ouchi, Kazuki; Morii, Shiori; Oka, Toshitaka; Kitatsuji, Yoshihiro; Koma, Yoshikazu; Konno, Katsuhiro*
Scientific Reports (Internet), 14, p.14945_1 - 14945_11, 2024/06
Times Cited Count:1 Percentile:36.75(Multidisciplinary Sciences)Particles containing alpha () nuclides were identified from sediment in stagnant water in the Unit 3 reactor building of the Fukushima Daiichi Nuclear Power Station (FDiNPS). We analyzed different concentrations of alpha nuclides samples collected at two sampling sites, torus room and Main steam isolation valve (MSIV) room. Most of the
-nuclides in the stagnant water samples of the torus room and the MSIV room were present in particle fractions larger than 10
m. We detected uranium-bearing particles in
m-size by scanning electron microscopy-energy dispersive X-Ray (SEM-EDX) observation. Other short lived
-nuclides were detected by alpha track detection. The
-nuclide-containing particles with several tens to several hundred
m in size were mainly comprised iron (Fe) by SEM-EDX analysis. This study clarifies that the morphologies of U and other
-nuclides in the sediment of stagnant water in the FDiNPS's Unit 3 reactor building.
Kato, Masato; Oki, Takumi; Watanabe, Masashi; Hirooka, Shun; Vauchy, R.; Ozawa, Takayuki; Uwaba, Tomoyuki; Ikusawa, Yoshihisa; Nakamura, Hiroki; Machida, Masahiko
Journal of the American Ceramic Society, 107(5), p.2998 - 3011, 2024/05
Times Cited Count:4 Percentile:34.13(Materials Science, Ceramics)Yomogida, Takumi; Hashimoto, Tadashi; Okumura, Takuma*; Yamada, Shinya*; Tatsuno, Hideyuki*; Noda, Hirofumi*; Hayakawa, Ryota*; Okada, Shinji*; Takatori, Sayuri*; Isobe, Tadaaki*; et al.
Analyst, 149(10), p.2932 - 2941, 2024/03
Times Cited Count:1 Percentile:40.01(Chemistry, Analytical)In this study, we successfully applied a transition-edge sensor (TES) spectrometer as a detector for microbeam X-ray measurements from a synchrotron X-ray light source to determine uranium (U) distribution at the micro-scale and its chemical species in biotite obtained from the U mine. It is difficult to separate the fluorescent X-ray of the U L line at 13.615 keV from that of the Rb K
line at 13.395 keV in the X-ray fluorescence spectrum with an energy resolution of approximately 220 eV of the conventional silicon drift detector (SDD). Meanwhile, the fluorescent X-rays of U L
and Rb K
were fully separated by TES with 50 eV energy resolution at the energy of around 13 keV. The successful peak separation by TES led to an accurate mapping analysis of trace U in micro-X-ray fluorescence measurements and a decrease in the signal-to-background ratio in micro-X-ray absorption near edge structure spectroscopy.
Yamazaki, Takumi*; Hirai, Takamasa*; Yagi, Takashi*; Yamashita, Yuichiro*; Uchida, Kenichi*; Seki, Takeshi*; Takanashi, Koki
Physical Review Applied (Internet), 21(2), p.024039_1 - 024039_11, 2024/02
Times Cited Count:2 Percentile:62.71(Physics, Applied)Morii, Shiori; Yomogida, Takumi; Asai, Shiho*; Ouchi, Kazuki; Oka, Toshitaka; Kitatsuji, Yoshihiro
KEK Proceedings 2023-2, p.132 - 137, 2023/11
New analytical method of a combination of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and isotope dilution mass spectrometry (IDMS) for quantification of Zr isotopes in a solid sample was investigated. Solid Zr-isotope reference was added to a simulated radioactive waste sample as a spike, then Zr isotope ratio was measured by LA-ICP-MS. As a result, we successfully quantify Zr isotopes in the simulated radioactive waste sample by new IDMS. There is a possibility that this new method can be applied for quantification of Zr-93 in difficult to dissolve radioactive wastes.
Morii, Shiori; Yomogida, Takumi; Asai, Shiho*; Ouchi, Kazuki; Oka, Toshitaka; Kitatsuji, Yoshihiro
Bunseki Kagaku, 72(10.11), p.441 - 448, 2023/10
Rapid analytical method for the determination of Zr-93 in radioactive wastes has been developed. Laser ablation (LA)-ICP-MS was applied to the analysis of Zr isotopes in simulated high-level radioactive waste (HLW). Sample preparation time was dramatically reduced by using a DGA resin as the adsorbent for Zr. Direct quantification of Zr isotopes in this resin sample was carried out by LA-ICP-MS. Laser settings were optimized to obtain a reliable isotope ratio of the sample by LA-ICP-MS. Quantification of Zr isotopes in the simulated HLW solution by isotope dilution mass spectrometry (IDMS) was examined. The amount of Zr-90 in the sample obtained by IDMS corresponded to a value calculated from the given concentration of Zr in the sample within uncertainty. Thus, this method can be applied for the quantification of Zr-93 in radioactive wastes.
Yamashita, Susumu; Sato, Takumi; Nagae, Yuji; Kurata, Masaki; Yoshida, Hiroyuki
Journal of Nuclear Science and Technology, 60(9), p.1029 - 1045, 2023/09
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Li, W.*; Yamada, Shinya*; Hashimoto, Tadashi; Okumura, Takuma*; Hayakawa, Ryota*; Nitta, Kiyofumi*; Sekizawa, Oki*; Suga, Hiroki*; Uruga, Tomoya*; Ichinohe, Yuto*; et al.
Analytica Chimica Acta, 1240, p.340755_1 - 340755_9, 2023/02
Times Cited Count:10 Percentile:66.73(Chemistry, Analytical)no abstracts in English
Nagano, Hirohiko*; Atarashi-Andoh, Mariko; Tanaka, Sota*; Yomogida, Takumi; Kozai, Naofumi; Koarashi, Jun
Frontiers in Forests and Global Change (Internet), 6, p.1228053_1 - 1228053_9, 2023/00
Times Cited Count:3 Percentile:51.05(Ecology)Yomogida, Takumi; Akiyama, Daisuke*; Ouchi, Kazuki; Kumagai, Yuta; Higashi, Kotaro*; Kitatsuji, Yoshihiro; Kirishima, Akira*; Kawamura, Naomi*; Takahashi, Yoshio*
Inorganic Chemistry, 61(50), p.20206 - 20210, 2022/12
Times Cited Count:7 Percentile:59.79(Chemistry, Inorganic & Nuclear)FeUO was studied to clarify the electronic structure of U(V) in a metal monouranate compound. We obtained the peak splitting of HERFD-XANES spectra utilizing high-energy-resolution fluorescence detection-X-ray absorption near edge structure (HERFD-XANES) spectroscopy at the U L
-edge, which is a novel technique in the U(V) compounds. Theoretical calculations revealed that the peak splitting was caused by splitting the 6d orbital of U(V). Such distinctive electronic states are of major interest to researchers and engineers working in various fields, from fundamental physics to the nuclear industry and environmental sciences for actinide elements.