Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Horiuchi, Hiroto*; Araki, Yasufumi; Wakabayashi, Yuki*; Ieda, Junichi; Yamanouchi, Michihiko*; 7 of others*
Advanced Materials, 2025, p.2416091_1 - 2416091_9, 2025/04
Times Cited Count:0Sugimoto, Satoshi*; Araki, Yasufumi; Takahashi, Yukiko*; Ieda, Junichi; Kasai, Shinya*
Communications Physics (Internet), 8, p.100_1 - 100_9, 2025/03
Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)Araki, Yasufumi; Ieda, Junichi
Magune, 20(1), p.12 - 17, 2025/02
Spintronics has been hindered by substantial power losses associated with the electric manipulation of spins. To mitigate Joule heating, we have developed a theory of electrically induced spin torques incorporating the topological structure of electron states. This topological contribution is free from dissipation and significantly enhances the torque efficiency per unit current compared with the conventional spin transfer torque. Our theory is supported by a magnetization switching experiment on ferromagnetic oxide SrRuO, where the observed torque is attributed to a type of topological electrons known as Weyl electrons.
Yoon, J.-Y.*; Takeuchi, Yutaro*; Takechi, Ryota*; Han, J.*; Uchiyama, Tomohiro*; Yamane, Yuta*; Kanai, Shun*; Ieda, Junichi; Ohno, Hideo*; Fukami, Shunsuke*
Nature Communications (Internet), 16, p.1171_1 - 1171_8, 2025/02
Times Cited Count:0 Percentile:0.00(Multidisciplinary Sciences)Ieda, Junichi; Fukada, Yukimasa; Fukuda, Tatsuo
Nihon Genshiryoku Gakkai-Shi ATOMO, 66(10), p.521 - 524, 2024/10
no abstracts in English
Ieda, Junichi
Nihon Juki Gakkai Kenkyukai Shiryo, 250, p.1 - 5, 2024/10
no abstracts in English
Ieda, Junichi; Araki, Yasufumi; Yamane, Yuta*
Kotai Butsuri, 59(8), p.403 - 410, 2024/08
Han, J.*; Uchimura, Tomohiro*; Araki, Yasufumi; Yoon, J.-Y.*; Takeuchi, Yutaro*; Yamane, Yuta*; Kanai, Shun*; Ieda, Junichi; Ohno, Hideo*; Fukami, Shunsuke*
Nature Physics, 20(7), p.1110 - 1117, 2024/07
Times Cited Count:15 Percentile:96.56(Physics, Multidisciplinary)Quantum metric and Berry curvature are two fundamental and distinct factors to describe the geometry of quantum eigenstates. While Berry curvature is known for playing crucial roles in several condensed-matter states, quantum metric, which was predicted to induce new classes of topological phenomena, has rarely been touched, particularly in an ambient circumstance. Using a topological chiral antiferromagnet MnSn adjacent to Pt, at room temperature, we successfully manipulate the quantum-metric structure of electronic states through its interplay with the nanoscale spin texture at the Mn
Sn/Pt interface. This is manifested by a time-reversal-odd second-order Hall effect that is robust against extrinsic electron scattering, in contrast to any transport effects from the Berry curvature. We also verify the flexibility of controlling the quantum-metric structure, as the interacting spin texture can be tuned by moderate magnetic fields or by interface engineering via spin-orbit interactions. Our work paves a way for harnessing the quantum-metric structure to unveil emerging topological physics in practical environments and to build applicable nonlinear devices.
Shamoto, Shinichi; Akatsu, Mitsuhiro*; Chang, L.-J.*; Nemoto, Yuichi*; Ieda, Junichi
Applied Physics Letters, 124(11), p.112402_1 - 112402_5, 2024/03
Times Cited Count:1 Percentile:40.97(Physics, Applied)The magnon excitation by ultrasound injection in YFe
O
is studied by inelastic neutron scattering. Both longitudinal and transverse ultrasound injections enhanced the inelastic neutron scattering intensity.
Ieda, Junichi
Kozan, 77(1), p.15 - 23, 2024/01
no abstracts in English
Harii, Kazuya*; Umeda, Maki; Arisawa, Hiroki*; Hioki, Tomosato*; Sato, Nana; Okayasu, Satoru; Ieda, Junichi
Journal of the Physical Society of Japan, 92(7), p.073701_1 - 073701_4, 2023/07
Times Cited Count:1 Percentile:23.32(Physics, Multidisciplinary)Araki, Yasufumi; Ieda, Junichi
Journal of the Physical Society of Japan, 92(7), p.074705_1 - 074705_9, 2023/06
Times Cited Count:0 Percentile:0.00(Physics, Multidisciplinary)Topological electromagnetism owing to nontrivial momentum-space topology of electrons in insulators gives rise to diverse anomalous magnetoelectric responses. While conventional inductors and capacitors are based on classical electromagnetism described by Maxwell's equations, here we show that topological electromagnetism in combination with spin dynamics in magnets also generates an inductance or a capacitance. We build a generic framework to extract the complex impedance on the basis of topological field theory, and demonstrate the emergence of an inductance or a capacitance in several heterostructure setups. In comparison with the previously-studied emergent inductances in metallic magnets, insulators highly suppress the power loss, because of the absence of Joule heating. We show that the inductance from topological electromagnetism is achieved at low current and high frequency, and is also advantageous in its power efficiency, as characterized by the high quality factor (Q-factor).
Masuda, Hiroto*; Yamane, Yuta*; Seki, Takeshi*; Raab, K.*; Dohi, Takaaki*; Modak, R.*; Uchida, Kenichi*; Ieda, Junichi; Klui, M.*; Takanashi, Koki
Applied Physics Letters, 122(16), p.162402_1 - 162402_7, 2023/04
Times Cited Count:3 Percentile:39.87(Physics, Applied)Sato, Yuma*; Takeuchi, Yutaro*; Yamane, Yuta*; Yoon, J.-Y.*; Kanai, Shun*; Ieda, Junichi; Ohno, Hideo*; Fukami, Shunsuke*
Applied Physics Letters, 122(12), p.122404_1 - 122404_5, 2023/03
Times Cited Count:5 Percentile:58.52(Physics, Applied)Maekawa, Sadamichi; Kikkawa, Takashi*; Chudo, Hiroyuki; Ieda, Junichi; Saito, Eiji
Journal of Applied Physics, 133(2), p.020902_1 - 020902_24, 2023/01
Times Cited Count:24 Percentile:93.17(Physics, Applied)Ieda, Junichi; Okayasu, Satoru; Harii, Kazuya*; Kobata, Masaaki; Yoshii, Kenji; Fukuda, Tatsuo; Ishida, Masahiko*; Saito, Eiji
IEEE Transactions on Magnetics, 58(8), p.1301106_1 - 1301106_6, 2022/08
Times Cited Count:1 Percentile:9.88(Engineering, Electrical & Electronic)The combination of spin-driven thermoelectric (STE) devices based on spin Seebeck effect (SSE), and radioactive isotopes as heat sources, has potential as a next-generation method of power generation in applications such as power supplies for space probes. However, there has been very limited knowledge available indicating the irradiation tolerance of spin thermoelectric devices. Through analysis using a heavy ion-beam accelerator and the hard X-ray photoemission spectroscopy (HAXPES) measurements, we show that a prototypical STE device based on YFe
O
/Pt heterostructures has tolerance to irradiation of high-energy heavy-ion beams. We used 320 MeV gold ion beams modeling cumulative damages due to fission products emitted from the surface of spent nuclear fuels. By varying the dose level, we confirmed that the thermoelectric and magnetic properties of the SSE elements are not affected by the ion-irradiation dose up to
ions/cm
fluence and that the SSE signal is extinguished around
ions/cm
, in which the ion tracks almost fully cover the sample surface. In addition, the HAXPES measurements were performed to understand the effects at the interface of Y
Fe
O
/Pt. The HAXPES measurements suggest that the chemical reaction that diminishes the SSE signals is enhanced with the increase of the irradiation dose. We share the current understandings of the damage analysis in Y
Fe
O
/Pt for developing better STE devices applicable to harsh environmental usages.
Funatsu, Takuya*; Kanai, Shun*; Ieda, Junichi; Fukami, Shunsuke*; Ohno, Hideo*
Nature Communications (Internet), 13, p.4079_1 - 4079_8, 2022/07
Times Cited Count:9 Percentile:59.76(Multidisciplinary Sciences)Modulation of the energy landscape by external perturbations governs various thermally-activated phenomena, described by the Arrhenius law. Thermal fluctuation of nanoscale magnetic tunnel junctions with spin-transfer torque (STT) shows promise for unconventional computing, whereas its rigorous representation, based on the Neel-Arrhenius law, has been controversial. In particular, the exponents for thermally-activated switching rate therein, have been inaccessible with conventional thermally-stable nanomagnets with decade-long retention time. Here we approach the Neel-Arrhenius law with STT utilising superparamagnetic tunnel junctions that have high sensitivity to external perturbations and determine the exponents through several independent measurements including homodyne-detected ferromagnetic resonance, nanosecond STT switching, and random telegraph noise. Furthermore, we show that the results are comprehensively described by a concept of local bifurcation observed in various physical systems. The findings demonstrate the capability of superparamagnetic tunnel junction as a useful tester for statistical physics as well as sophisticated engineering of probabilistic computing hardware with a rigorous mathematical foundation.
Masuda, Hiroto*; Seki, Takeshi*; Yamane, Yuta*; Modak, R.*; Uchida, Kenichi*; Ieda, Junichi; Lau, Y.-C.*; Fukami, Shunsuke*; Takanashi, Koki
Physical Review Applied (Internet), 17(5), p.054036_1 - 054036_9, 2022/05
Times Cited Count:9 Percentile:59.76(Physics, Applied)The antisymmetric interlayer exchange coupling (AIEC) was recently discovered, playing pivotal roles in magnetization switching of a synthetic antiferromagnet (SAF) through inducing magnetization canting. Large AIEC is reported for perpendicularly magnetized Pt/Co/Ir/Co/Pt with wedge-shaped layers. The effective field of the AIEC is related with symmetric interlayer exchange coupling, providing guides to enhance the AIEC. We develop an extended Stoner-Wohlfarth model for a SAF, revealing key factors in its magnetization switching. Combining the theoretical knowledge and the experimental results, perpendicular magnetization switching is achieved solely by an in-plane magnetic field.
Uchimura, Tomohiro*; Yoon, J.-Y.*; Sato, Yuma*; Takeuchi, Yutaro*; Kanai, Shun*; Takechi, Ryota*; Kishi, Keisuke*; Yamane, Yuta*; DuttaGupta, S.*; Ieda, Junichi; et al.
Applied Physics Letters, 120(17), p.172405_1 - 172405_5, 2022/04
Times Cited Count:24 Percentile:88.93(Physics, Applied)Yamane, Yuta*; Fukami, Shunsuke*; Ieda, Junichi
Physical Review Letters, 128(14), p.147201_1 - 147201_6, 2022/04
Times Cited Count:9 Percentile:71.27(Physics, Multidisciplinary)We extend the theory of emergent inductance, which has recently been discovered in spiral magnets, to arbitrary magnetic textures by taking into account spin-orbit couplings arising in the absence of spatial inversion symmetry. We propose a new concept of spin-orbit emergent inductance, which can be formulated as originating from a dynamical Aharonov-Casher phase of an electron in ferromagnets. The spin-orbit emergent inductance universally arises in the coexistence of magnetism and the spin-orbit couplings, even with spatially uniform magnetization, allowing its stable operation in wide ranges of temperature and frequency. Revisiting the widely studied systems involving ferromagnets with spatial inversion asymmetry, with the new perspective offered by our work, will lead to opening a new paradigm in the study of spin-orbit physics and the spintronics-based power management in ultrawideband frequency range.