Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kurita, Keisuke; Iikura, Hiroshi
Hamon, 31(1), p.11 - 13, 2021/02
no abstracts in English
Sun, X. H.*; Wang, H.*; Otsu, Hideaki*; Sakurai, Hiroyoshi*; Ahn, D. S.*; Aikawa, Masayuki*; Fukuda, Naoki*; Isobe, Tadaaki*; Kawakami, Shunsuke*; Koyama, Shumpei*; et al.
Physical Review C, 101(6), p.064623_1 - 064623_12, 2020/06
Times Cited Count:4 Percentile:56.79(Physics, Nuclear)The spallation and fragmentation reactions of Xe induced by proton, deuteron and carbon at 168 MeV/nucleon were studied at RIKEN Radioactive Isotope Beam Factory via the inverse kinematics technique. The cross sections of the lighter products are larger in the carbon-induced reactions due to the higher total kinetic energy of carbon. The energy dependence was investigated by comparing the newly obtained data with previous results obtained at higher reaction energies. The experimental data were compared with the results of SPACS, EPAX, PHITS and DEURACS calculations. These data serve as benchmarks for the model calculations.
Shinohara, Takenao; Kai, Tetsuya; Oikawa, Kenichi; Nakatani, Takeshi; Segawa, Mariko; Hiroi, Kosuke; Su, Y. H.; Oi, Motoki; Harada, Masahide; Iikura, Hiroshi; et al.
Review of Scientific Instruments, 91(4), p.043302_1 - 043302_20, 2020/04
Times Cited Count:32 Percentile:95.58(Instruments & Instrumentation)Koyama, Taku*; Ueno, Kazuki*; Sekine, Mariko*; Matsumoto, Yoshihiro*; Kai, Tetsuya; Shinohara, Takenao; Iikura, Hiroshi; Suzuki, Hiroshi; Kanematsu, Manabu*
Materials Research Proceedings, Vol.4, p.155 - 160, 2018/05
Times Cited Count:0 Percentile:0.2Sakai, Takuro; Iikura, Hiroshi; Yamada, Naoto*; Sato, Takahiro*; Ishii, Yasuyuki*; Uchida, Masaya*
QST-M-8; QST Takasaki Annual Report 2016, P. 140, 2018/03
Sakai, Takuro; Yasuda, Ryo; Iikura, Hiroshi; Matsubayashi, Masahito
JPS Conference Proceedings (Internet), 11, p.020005_1 - 020005_6, 2016/11
Iikura, Hiroshi; Sakai, Takuro; Matsubayashi, Masahito
Hamon, 25(4), p.277 - 282, 2015/11
We introduce the basic principle of neutron radiography technique, and the brief review of its applications. Most of works in this article have been performed at TNRF, Tokai, Japan. Neutron radiography is a nondestructive testing method, so that this technique is used for not only academic studies but also industrial applications. Keywords: neutron radiography, imaging, TNRF
Faenov, A.*; Matsubayashi, Masahito; Pikuz, T.*; Fukuda, Yuji; Kando, Masaki; Yasuda, Ryo; Iikura, Hiroshi; Nojima, Takehiro; Sakai, Takuro; Shiozawa, Masahiro*; et al.
High Power Laser Science and Engineering, 3, p.e27_1 - e27_9, 2015/10
Times Cited Count:10 Percentile:52.59(Optics)Okuno, Koichi*; Iikura, Hiroshi
Nuclear Science and Techniques, 25(S1), p.S010604_1 - S010604_5, 2014/12
no abstracts in English
Sakai, Takuro; Yasuda, Ryo; Iikura, Hiroshi; Nojima, Takehiro; Koka, Masashi; Sato, Takahiro; Ishii, Yasuyuki; Oshima, Akihiro*
Nuclear Instruments and Methods in Physics Research B, 332, p.238 - 241, 2014/08
Times Cited Count:1 Percentile:10.85(Instruments & Instrumentation)We have successfully fabricated novel microscopic imaging devices made from UV/EB curable resin using an external scanning proton microbeams. The devices are micro-structured fluorescent plates that consist of an array of micro-pillars that align periodically. The base material used in the pillars is UV/EB curable resin and each pillar contains phosphor grains. The pattern exposures were performed using a proton beam writing technique. The height of the pillars depends on the range of the proton beam. Optical microscopy and scanning electron microscopy have been used to characterize the samples. The results show that the fabricated fluorescent plates are expected to be high-spatial-resolution imaging devices.
Takai, Shigeomi*; Yoshioka, Kazuya*; Iikura, Hiroshi; Matsubayashi, Masahito; Yao, Takeshi*; Esaka, Takao*
Solid State Ionics, 256, p.93 - 96, 2014/03
Times Cited Count:33 Percentile:77.47(Chemistry, Physical)Sakai, Takuro; Yasuda, Ryo; Iikura, Hiroshi; Nojima, Takehiro; Matsubayashi, Masahito; Kada, Wataru; Koka, Masashi; Sato, Takahiro; Okubo, Takeru; Ishii, Yasuyuki; et al.
Nuclear Instruments and Methods in Physics Research B, 306, p.299 - 301, 2013/07
Times Cited Count:7 Percentile:51.39(Instruments & Instrumentation)Yasuda, Ryo; Matsubayashi, Masahito; Sakai, Takuro; Nojima, Takehiro; Iikura, Hiroshi; Katagiri, Masaki*; Takano, Katsuyoshi*; Pikuz, T.; Faenov, A.*
Physics Procedia, 43, p.196 - 204, 2013/00
Times Cited Count:1 Percentile:54.5Iikura, Hiroshi; Tsutsui, Noriaki*; Saito, Yasushi*; Nojima, Takehiro; Yasuda, Ryo; Sakai, Takuro; Matsubayashi, Masahito
Physics Procedia, 43, p.161 - 168, 2013/00
Times Cited Count:4 Percentile:84.6Nojima, Takehiro; Yasuda, Ryo; Takenaka, Nobuyuki*; Katagiri, Masaki*; Iikura, Hiroshi; Sakai, Takuro; Matsubayashi, Masahito
Physics Procedia, 43, p.282 - 287, 2013/00
Times Cited Count:2 Percentile:70.38We developed a new imaging system for observing the water distribution in Polymer Electrolyte Fuel Cell (PEFC) under operation. This imaging system realizes both low noise and high sensitivity imaging and it enables to obtain an image in relatively short exposure time. This imaging system consists of EM-CCD (Electron Multiplication-Charged Coupled Device) camera, a LiF/ZnS scintillator screen and slit system. The EM-CCD camera has wide dynamic range and high sensitivity. The brightness of the scintillator screen is about three times higher than that of conventional type. The slit system was used for reducing the white dot noise caused by primary and/or secondary prompt rays. A characteristic test of this imaging system using JARI (Japan Automobile Research Institute)-standard cell was carried out at TNRF. In the results of the test, qualitative and quantitative observation of water behavior in the channel of PEFC was archived by the new imaging system.
Sakai, Takuro; Yasuda, Ryo; Iikura, Hiroshi; Nojima, Takehiro; Matsubayashi, Masahito
Physics Procedia, 43, p.223 - 230, 2013/00
Times Cited Count:0 Percentile:0Nojima, Takehiro; Yasuda, Ryo; Takenaka, Nobuyuki*; Hayashida, Hirotoshi; Iikura, Hiroshi; Sakai, Takuro; Matsubayashi, Masahito
JAEA-Technology 2011-037, 33 Pages, 2012/02
We have equipped fuel cell operation system for TNRF at JRR-3 in order to visualize on performance of PEFC. Our system, which is aimed to be used in nuclear facility, is composed by various equipments that give safety in experiments such as hydrogen diluting system and purge system, etc. We confirmed normal operation of our system with JARI-standard fuel cell, and succeeded in visualizing water distribution of fuel cell on performance by our system with neutron radiography.
Matsubayashi, Masahito; Faenov, A. Ya.*; Pikuz, T.*; Fukuda, Yuji; Kato, Yoshiaki*; Yasuda, Ryo; Iikura, Hiroshi; Nojima, Takehiro; Sakai, Takuro
Nuclear Instruments and Methods in Physics Research A, 651(1), p.90 - 94, 2011/09
Times Cited Count:7 Percentile:50.8(Instruments & Instrumentation)Neutron imaging by color center formation in LiF crystals was applied to standard samples such as a sensitivity indicator (SI) for neutron radiography. The SI was exposed to 5 mm pinhole collimated thermal neutron beam with a LiF crystal and a neutron imaging plate (NIP) for 120 min in JRR-3 thermal neutron radiography facility. The image in NIP was read out with a readout resolution of 50 m. The image of SI in LiF crystal was read out with pixel size of 1.38
m using a laser confocal microscope. All gaps were clearly observed in the images for both LiF crystal and NIP, but small holes were not recognized for NIP. The experiment showed that LiF crystals had excellent characteristics as neutron imaging detectors such as high sensitivity, high spatial resolution, wide dynamic range and so on. In the paper, detailed characteristics of LiF crystals are compared with those of other neutron imaging detectors: NIP, a combination of fluorescent converter and cooled CCD camera.
Iikura, Hiroshi; Tsutsui, Noriaki*; Nakamura, Tatsuya; Katagiri, Masaki*; Kureta, Masatoshi; Kubo, Jun*; Matsubayashi, Masahito
Nuclear Instruments and Methods in Physics Research A, 651(1), p.100 - 104, 2011/09
Times Cited Count:8 Percentile:55.43(Instruments & Instrumentation)Japan Atomic Energy Agency has developed the neutron scintillator jointly with Chichibu Fuji Co., Ltd. In this study, we evaluated the new ZnS(Ag):Al/LiF scintillator developed for neutron imaging. It was confirmed that the brightness increased by about double while maintaining equal performance for the spatial resolution as compared with a conventional scintillator. High frame-rate imaging using a high-speed video camera system and this new scintillator made it possible to image beyond 10000 frames per second while still having enough brightness. This technique allowed us to obtain a high-frame-rate visualization of oil flow in a running car engine. Furthermore, we devised a technique to increase the light intensity of reception for a camera by adding brightness enhancement films on the output surface of the scintillator. It was confirmed that the spatial resolution degraded more than double, but the brightness increased by about three times.
Yasuda, Ryo; Nitto, Koichi*; Konagai, Chikara*; Shiozawa, Masahiro*; Takenaka, Nobuyuki*; Asano, Hitoshi*; Murakawa, Hideki*; Sugimoto, Katsumi*; Nojima, Takehiro; Hayashida, Hirotoshi; et al.
Nuclear Instruments and Methods in Physics Research A, 651(1), p.268 - 272, 2011/09
Times Cited Count:7 Percentile:50.8(Instruments & Instrumentation)Neutron radiography is one of useful tools to visualize water behavior in fuel cells under operation. In order to observe the detailed information about the water distribution in MEA and GDL in fuel cells, a high spatial resolution and high sensitivity neutron imaging system are required. We developed an imaging system using the neutron color imaging intensifier and continuously observed water distribution in operating a fuel cell. By using the system, a small type fuel cell under operation was continuously observed at the TNRF in every 20 sec. In the results, the water area was appeared from GDL and MEA, and expanded to the channel of the cathode side. On the other hand, voltage was gradually reduced with the operation time, and steeply dropped. It is considered that voltage drop was caused by blockage of gas flow due to the piling up water in the channel of the cathode side.