Refine your search:     
Report No.
 - 
Search Results: Records 1-9 displayed on this page of 9
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Effects of crosslinker density on the polymer network structure in poly-$$N$$,$$N$$-dimethylacrylamide hydrogels

Fukazawa, Tomoko*; Ikeda, Naohiro*; Tabata, Mayu*; Hattori, Masataka*; Aizawa, Mamoru*; Yunoki, Shunji*; Sekine, Yurina

Journal of Polymer Science, Part B; Polymer Physics, 51(13), p.1017 - 1027, 2013/07

 Times Cited Count:36 Percentile:75.18(Polymer Science)

Journal Articles

REIDAC; A Software package for retrospective dose assessment in internal contamination of radionuclides

Kurihara, Osamu; Hato, Shinji; Kanai, Katsuta; Takada, Chie; Takasaki, Koji; Ito, Kimio; Ikeda, Hiroshi*; Oeda, Mikihiro*; Kurosawa, Naohiro*; Fukutsu, Kumiko*; et al.

Journal of Nuclear Science and Technology, 44(10), p.1337 - 1346, 2007/10

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

In the case of internal contamination of radionuclides, it is necessary to perform internal dose assessment for radiation protection. For this purpose, the ICRP has given the dose coefficients and the retention and excretion rates for various radionuclides. However, these dosimetric quantities are calculated only in typical conditions, therefore, are not necessarily covered enough in the case of dose assessment in which specific information on the incident or/and individual biokinetic characteristics should be taken into account retrospectively. This paper describes a developed PC-based package of software REIDAC to meet the needs in retrospective dose assessment. REIDAC was verified by comparisons with dosimetric quantities given on the ICRP publications and several examples of practical use were also shown.

Journal Articles

Development of a code MOGRA for predicting the migration of ground additions and its application to various land utilization areas

Amano, Hikaru; Takahashi, Tomoyuki*; Uchida, Shigeo*; Matsuoka, Shungo*; Ikeda, Hiroshi*; Hayashi, Hiroko*; Kurosawa, Naohiro*

Journal of Nuclear Science and Technology, 40(11), p.975 - 979, 2003/11

 Times Cited Count:2 Percentile:19(Nuclear Science & Technology)

MOGRA is a migration prediction code for toxic ground additions including radioactive materials in a terrestrial environment. MOGRA consists of computational codes that are applicable to various evaluation target systems, and can be used on personal computers. The computational code has the dynamic compartment analysis block, GUI for computation parameter settings and results displays, data bases. The compartments are obtained by classifying various natural environments into groups that exhibit similar properties. A hypothetical combination of land usage was supposed to check the function of MOGRA. The land usage was consisted from cultivated lands, forests, uncultivated lands, urban area, river, and lake. Each land usage has its own inside model which is basic module. Also supposed was homogeneous contamination of the surface land from atmospheric deposition of $$^{137}$$Cs (1.0 Bq/m$$^{2}$$). The system analyzed the dynamic changes of $$^{137}$$Cs concentrations in each compartment, fluxes from one compartment to another compartment.

Journal Articles

MOGRA-DB; Database system for migration prediction code MOGRA

Amano, Hikaru; Ikeda, Hiroshi*; Sasaki, Toshihisa*; Matsuoka, Shungo*; Kurosawa, Naohiro*; Takahashi, Tomoyuki*; Uchida, Shigeo*

KEK Proceedings 2003-11, p.239 - 244, 2003/11

A Code MOGRA (Migration Of GRound Additions) is a migration prediction code for toxic ground additions including radioactive materials in a terrestrial environment, which consists of computational codes that are applicable to various evaluation target systems, and can be used on personal computers. The computational code has the dynamic compartment analysis block at its core, the graphical user interface (GUI) for model formation, computation parameter settings, and results displays. The code MOGRA has varieties of databases, which is called MOGRA-DB. Another additional code MOGRA-MAP can take in graphic map and calculate the square measure about the target land.

Journal Articles

Status of development of a code for predicting the migration of ground additions: MOGRA

Amano, Hikaru; Takahashi, Tomoyuki*; Uchida, Shigeo*; Matsuoka, Shungo*; Ikeda, Hiroshi*; Hayashi, Hiroko*; Kurosawa, Naohiro*

JAERI-Conf 2003-010, p.32 - 36, 2003/09

MOGRA (Migration Of GRound Additions) is a migration prediction code for toxic ground additions including radioactive materials in a terrestrial environment. MOGRA consists of computational codes that are applicable to various evaluation target systems, and can be used on personal computers. The computational code has the dynamic compartment analysis block at its core, the graphical user interface (GUI) for computation parameter settings and results displays, data files and so on. The compartments are obtained by classifying various natural environments into groups that exhibit similar properties. MOGRA has varieties of databases, which consist of radionuclides decay chart, distribution coefficients between solid and liquid, transfer factors from soil to plant, transfer coefficients from feed to beef and milk, concentration factors, and age dependent dose conversion factors for many radionuclides. Here the status of development of MOGRA is presented.

Journal Articles

Application of MOGRA for migration of contaminants through different land utilization areas

Amano, Hikaru; Takahashi, Tomoyuki*; Uchida, Shigeo*; Matsuoka, Shungo*; Ikeda, Hiroshi*; Hayashi, Hiroko*; Kurosawa, Naohiro*

JAERI-Conf 2003-010, p.112 - 121, 2003/09

The functionality of MOGRA is being verified by applying it in the analyses of the migration rates of radioactive substances from the atmosphere to soils and plants and flow rates into the rivers. This has been achieved by also taking their mode classifications into consideration. In this report, a hypothetical combination of land usage was supposed to check the function of MOGRA. The land usage was consisted from cultivated lands, forests, uncultivated lands, urban area, river, and lake. Each land usage has its own inside model which is basic module. Also supposed was homogeneous contamination of the surface land from atmospheric deposition of Cs-137 (1.0 Bq/m$$^{2}$$). The system can analyze the dynamic changes of Cs-137 concentrations in each compartment, fluxes from one compartment to another compartment.

Journal Articles

Equipment of model template for a code predicting the migration of ground additions, MOGRA

Takahashi, Tomoyuki*; Amano, Hikaru; Uchida, Shigeo*; Ikeda, Hiroshi*; Matsuoka, Shungo*; Hayashi, Hiroko*; Kurosawa, Naohiro*

Kankyo Eisei Kogaku Kenkyu, 17(3), p.340 - 344, 2003/07

no abstracts in English

Journal Articles

A Code for predicting the migration of ground additional MOGRA

Amano, Hikaru; *; Uchida, Shigeo*; Tsuzuki, Katsunori; Matsuoka, Shungo*; Ikeda, Hiroshi*; Matsubara, Takeshi*; Kurosawa, Naohiro*

KURRI-KR-80, p.48 - 49, 2001/12

no abstracts in English

Oral presentation

Laser assisted thoracic surgery for the tiny nodule in the lung

Furumoto, Hideyuki*; Usuda, Jitsuo*; Maehara, Sachio*; Imai, Kentaro*; Ishizumi, Taichiro*; Honda, Hidetoshi*; Oka, Kiyoshi; Kajiwara, Naohiro*; Ohira, Tatsuo*; Ikeda, Norihiko*

no journal, , 

no abstracts in English

9 (Records 1-9 displayed on this page)
  • 1