Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 80

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Development of an ${it in-situ}$ continuous air monitor for the measurement of highly radioactive alpha-emitting particulates ($$alpha$$-aerosols) under high humidity environment

Tsubota, Yoichi; Honda, Fumiya; Tokonami, Shinji*; Tamakuma, Yuki*; Nakagawa, Takahiro; Ikeda, Atsushi

Nuclear Instruments and Methods in Physics Research A, 1030, p.166475_1 - 166475_7, 2022/05

In the long-lasting decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), the dismantling of nuclear fuel debris (NFD) remaining in the damaged reactors is an unavoidable but significant issue with many technical difficulties. The dismantling is presumed to involve mechanical cutting, generating significant concentrations of particulates containing $$alpha$$-radionuclides ($$alpha$$-aerosols) that pose significant health risk upon inhalation. In order to minimize the radiation exposure of workers with $$alpha$$-aerosols during the dismantling/decommissioning process at 1F, it is essential to monitor the concentration of $$alpha$$-aerosols at the point of initial generation, i.e. inside the primary containment vessels (PCV) of the damaged reactors. Toward this end, an ${it in situ}$ monitoring system for $$alpha$$-aerosols (${it in situ}$ alpha air monitor: IAAM) was developed and its technical performance was investigated under the conditions expected for the actual environments at 1F. IAAM was confirmed to fulfill four technical requirements: (1) steady operation under high humidity, (2) operation without using filters, (3) capability of measuring a high counting rate of $$alpha$$-radiation, and (4) selective measurement of $$alpha$$-radiation even under high radiation background with $$beta$$/$$gamma$$-rays. IAAM is capable of selectively measuring $$alpha$$-aerosols with a concentration of 3.3 $$times$$ 10$$^{2}$$ Bq/cm$$^{3}$$ or higher without saturation under a high humid environment (100%-relative humidity) and under high background with $$beta$$/$$gamma$$-radiation (up to 100 mSv/h of $$gamma$$-radiation). These results demonstrate promising potential of IAAM to be utilized as a reliable monitoring system for $$alpha$$-aerosols during the dismantling of NFD, as well as the whole long-lasting decommissioning of 1F.

Journal Articles

Crystallographical and morphological changes in charge-ordering transition of RFe$$_{2}$$O$$_{4}$$ (R: Y, Lu) investigated by transmission electron microscopy

Horibe, Yoichi*; Mori, Shigeo*; Ikeda, Naoshi*; Yoshii, Kenji; Maeno, Hiroshi*; Murakami, Yasukazu*

Ferroelectrics, 584(1), p.20 - 30, 2021/00

Temperature dependence of charge-ordered crystal structures and domain structures in RFe$$_{2}$$O$$_{4}$$ (R: Y and Lu) was investigated by energy-filtered transmission electron microscopy, combined with conventional transmission electron microscopy. The presence of three-dimensional to two-dimensional charge ordering transition were observed in both RFe$$_{2}$$O$$_{4}$$ on heating. Furthermore, real-space images obtained with the energy-filtered transmission electron microscopy revealed that YRFe$$_{2}$$O$$_{4}$$ has less anisotropic nanometer-scale charge-ordered domains than LuRFe$$_{2}$$O$$_{4}$$. These findings in RFe$$_{2}$$O$$_{4}$$ indicate the importance of the interchange interactions between Fe-O bilayers in addition to those within bilayers in the structural phase transitions associated with charge ordering in this system.

Journal Articles

Effect of electron correlations on spin excitation bandwidth in Ba$$_{0.75}$$K$$_{0.25}$$Fe$$_{2}$$As$$_{2}$$ as seen via time-of-flight inelastic neutron scattering

Murai, Naoki; Suzuki, Katsuhiro*; Ideta, Shinichiro*; Nakajima, Masamichi*; Tanaka, Kiyohisa*; Ikeda, Hiroaki*; Kajimoto, Ryoichi

Physical Review B, 97(24), p.241112_1 - 241112_6, 2018/06

 Times Cited Count:5 Percentile:39.54(Materials Science, Multidisciplinary)

We use inelastic neutron scattering (INS) to investigate the effect of electron correlations on spin dynamics in iron-based superconductor Ba$$_{0.75}$$K$$_{0.25}$$Fe$$_{2}$$As$$_{2}$$. Our INS data show a spin-wave-like dispersive feature, with a zone boundary energy of 200 meV. A first principles analysis of dynamical spin susceptibility, incorporating the mass renormalization factor of 3, as determined by angle-resolved photoemission spectroscopy, provides a reasonable description of the observed spin excitations. This analysis shows that electron correlations in the Fe-3d bands yield enhanced effective electron masses, and consequently, induce substantial narrowing of the spin excitation bandwidth. Our results highlight the importance of electron correlations in an itinerant description of the spin excitations in iron-based superconductors.

Journal Articles

Elastic and dynamical structural properties of La and Mn-doped SrTiO$$_{3}$$ studied by neutron scattering and their relation with thermal conductivities

Kajimoto, Ryoichi; Nakamura, Mitsutaka; Murai, Naoki; Shamoto, Shinichi; Honda, Takashi*; Ikeda, Kazutaka*; Otomo, Toshiya*; Hata, Hiroto*; Eto, Takahiro*; Noda, Masaaki*; et al.

Scientific Reports (Internet), 8(1), p.9651_1 - 9651_8, 2018/06

 Times Cited Count:4 Percentile:32.16(Multidisciplinary Sciences)

Journal Articles

Implementation of a low-activation Au-In-Cd decoupler into the J-PARC 1 MW short pulsed spallation neutron source

Teshigawara, Makoto; Ikeda, Yujiro; Oi, Motoki; Harada, Masahide; Takada, Hiroshi; Kakishiro, Masanori*; Noguchi, Gaku*; Shimada, Tsubasa*; Seita, Kyoichi*; Murashima, Daisuke*; et al.

Nuclear Materials and Energy (Internet), 14, p.14 - 21, 2018/01

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

We developed an Au-In-Cd (AuIC) decoupler material to reduce induced radioactivity instead of Ag-In-Cd one, which has a cut off energy of 1eV. In order to implement it into an actual moderator-reflector assembly, a number of critical engineering issues need to be resolved with regard to large-sized bonding between AuIC and A5083 alloys by the hot isostatic pressing process. We investigated this process in terms of the surface conditions, sizes, and heat capacities of large AuIC alloys. We also show a successful implementation of an AuIC decoupler into a reflector assembly, resulting in a remarkable reduction of radioactivity by AuIC compared to AIC without sacrificing neutronic performance.

Journal Articles

Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex, 2; Neutron scattering instruments

Nakajima, Kenji; Kawakita, Yukinobu; Ito, Shinichi*; Abe, Jun*; Aizawa, Kazuya; Aoki, Hiroyuki; Endo, Hitoshi*; Fujita, Masaki*; Funakoshi, Kenichi*; Gong, W.*; et al.

Quantum Beam Science (Internet), 1(3), p.9_1 - 9_59, 2017/12

The neutron instruments suite, installed at the spallation neutron source of the Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex (J-PARC), is reviewed. MLF has 23 neutron beam ports and 21 instruments are in operation for user programs or are under commissioning. A unique and challenging instrumental suite in MLF has been realized via combination of a high-performance neutron source, optimized for neutron scattering, and unique instruments using cutting-edge technologies. All instruments are/will serve in world-leading investigations in a broad range of fields, from fundamental physics to industrial applications. In this review, overviews, characteristic features, and typical applications of the individual instruments are mentioned.

Journal Articles

Observation of momentum-resolved charge fluctuations proximate to the charge-order phase using resonant inelastic X-ray scattering

Yoshida, Masahiro*; Ishii, Kenji; Naka, Makoto*; Ishihara, Sumio*; Jarrige, I.*; Ikeuchi, Kazuhiko*; Murakami, Yoichi*; Kudo, Kazutaka*; Koike, Yoji*; Nagata, Tomoko*; et al.

Scientific Reports (Internet), 6, p.23611_1 - 23611_8, 2016/03

 Times Cited Count:0 Percentile:0(Multidisciplinary Sciences)

Journal Articles

Single-crystal neutron diffraction study of the heavy-electron superconductor CeNiGe$$_{3}$$

Ikeda, Yoichi*; Ueta, Daichi*; Yoshizawa, Hideki*; Nakao, Akiko*; Munakata, Koji*; Ohara, Takashi

Journal of the Physical Society of Japan, 84(12), p.123701_1 - 123701_5, 2015/12

 Times Cited Count:2 Percentile:24.12(Physics, Multidisciplinary)

Single-crystal neutron diffraction study was performed for anomalous antiferromagnetic ordering in a heavy-electron superconductor CeNiGe$$_{3}$$. We observed incommensurate magnetic Bragg reflections characterized with the propagation vector of $$k_{2}$$ = (0; 0:41; 1=2) below the N$'e$el temperature of 5 K, while there is no significant magnetic reflection at the commensurate propagation vector of $$k_{1}$$ = (1; 0; 0) at which another magnetic reflection was observed in the previous neutron diffraction study with a polycrystalline sample. From the single crystal study, we suggest that the magnetic phase of CeNiGe$$_{3}$$ at ambient pressure is characterized only by the incommensurate propagation vector $$k_{2}$$.

Journal Articles

Science from the initial operation of HRC

Ito, Shinichi*; Yokoo, Tetsuya*; Masuda, Takatsugu*; Yoshizawa, Hideki*; Soda, Minoru*; Ikeda, Yoichi*; Ibuka, Soshi*; Kawana, Daichi*; Sato, Taku*; Nambu, Yusuke*; et al.

JPS Conference Proceedings (Internet), 8, p.034001_1 - 034001_6, 2015/09

Journal Articles

Pressure-temperature-field phase diagram in the ferromagnet U$$_3$$P$$_4$$

Araki, Shingo*; Hayashida, Minami*; Nishiumi, Naoto*; Manabe, Hiroki*; Ikeda, Yoichi*; Kobayashi, Tatsuo*; Murata, Keizo*; Inada, Yoshihiko*; Wi$'s$niewski, P.*; Aoki, Dai*; et al.

Journal of the Physical Society of Japan, 84(2), p.024705_1 - 024705_8, 2015/02

 Times Cited Count:7 Percentile:54.9(Physics, Multidisciplinary)

Journal Articles

Radiation monitoring using an unmanned helicopter in the evacuation zone around the Fukushima Daiichi Nuclear Power Plant

Sanada, Yukihisa; Kondo, Atsuya*; Sugita, Takeshi*; Nishizawa, Yukiyasu; Yuki, Yoichi*; Ikeda, Kazutaka*; Shoji, Yasunori*; Torii, Tatsuo

Exploration Geophysics, 45(1), p.3 - 7, 2014/11

 Times Cited Count:25 Percentile:71.34(Geochemistry & Geophysics)

The Great East Japan Earthquake on March 11, 2011 generated a series of large tsunami waves that resulted serious damage to the Fukushima Daiichi Nuclear Power Plant (NPP) and a large amount of radioactive materials were discharged from the NPP to the environment. In recent years, technologies for an unmanned helicopter have been developed and applied to various fields. In expectation of the application of the unmanned helicopter to airborne radiation monitoring, we had developed a radiation monitoring system. Then, we measured the radiation level by using unmanned helicopter in soil contaminated areas by radioactive cesium emitted from the NPP to evaluate ambient dose-rate distribution around the areas. Here, we reports on the measurement technique and the result.

Journal Articles

Metamagnetic transition of itinerant ferromagnet U$$_3$$P$$_4$$ under high pressure

Araki, Shingo*; Hayashida, Minami*; Nishiumi, Naoto*; Manabe, Hiroki*; Ikeda, Yoichi*; Kobayashi, Tatsuo*; Murata, Keizo*; Inada, Yoshihiko*; Wi$'s$niewski, P.*; Aoki, Dai*; et al.

JPS Conference Proceedings (Internet), 3, p.011081_1 - 011081_6, 2014/06

Journal Articles

Bipartite magnetic parent phases in the iron oxypnictide superconductor

Hiraishi, Masatoshi*; Iimura, Soshi*; Kojima, Kenji*; Yamaura, Junichi*; Hiraka, Haruhiro*; Ikeda, Kazutaka*; Miao, P.*; Ishikawa, Yoshihisa*; Torii, Shuki*; Miyazaki, Masanori*; et al.

Nature Physics, 10(4), p.300 - 303, 2014/04

 Times Cited Count:94 Percentile:96.38(Physics, Multidisciplinary)

JAEA Reports

Disassembly of JT-60 tokamak device and ancillary facilities for JT-60 tokamak

Okano, Fuminori; Ichige, Hisashi; Miyo, Yasuhiko; Kaminaga, Atsushi; Sasajima, Tadayuki; Nishiyama, Tomokazu; Yagyu, Junichi; Ishige, Yoichi; Suzuki, Hiroaki; Komuro, Kenichi; et al.

JAEA-Technology 2014-003, 125 Pages, 2014/03

JAEA-Technology-2014-003.pdf:13.32MB

The disassembly of JT-60 tokamak device and its peripheral equipments, where the total weight was about 5400 tons, started in 2009 and accomplished in October 2012. This disassembly was required process for JT-60SA project, which is the Satellite Tokamak project under Japan-EU international corroboration to modify the JT-60 to the superconducting tokamak. This work was the first experience of disassembling a large radioactive fusion device based on Radiation Hazard Prevention Act in Japan. The cutting was one of the main problems in this disassembly, such as to cut the wielded parts together with toroidal field coils, and to cut the vacuum vessel into two. After solving these problems, the disassembly completed without disaster and accident. This report presents the outline of the JT-60 disassembly, especially tokamak device and ancillary facilities for tokamak device.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2012

Hama, Katsuhiro; Mikake, Shinichiro; Nishio, Kazuhisa; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Sasao, Eiji; Hikima, Ryoichi*; Tanno, Takeo*; Sanada, Hiroyuki; Onoe, Hironori; et al.

JAEA-Review 2013-050, 114 Pages, 2014/02

JAEA-Review-2013-050.pdf:19.95MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in fiscal year 2012. This report presents the results of the investigations, construction and collaboration studies in fiscal year 2012, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.

JAEA Reports

Disassembly of JT-60 tokamak device

Okano, Fuminori; Ikeda, Yoshitaka; Sakasai, Akira; Hanada, Masaya; Ichige, Hisashi; Miyo, Yasuhiko; Kaminaga, Atsushi; Sasajima, Tadayuki; Nishiyama, Tomokazu; Yagyu, Junichi; et al.

JAEA-Technology 2013-031, 42 Pages, 2013/11

JAEA-Technology-2013-031.pdf:18.1MB

The disassembly of JT-60 tokamak device and its peripheral equipments, where the total weight was about 6200 tons, started in 2009 and accomplished in October 2012. This disassembly was required process for JT-60SA project, which is the Satellite Tokamak project under Japan-EU international corroboration to modify the JT-60 to the superconducting tokamak. This work was the first experience of disassembling a large radioactive fusion device based on Radiation Hazard Prevention Act in Japan. The cutting was one of the main problems in this disassembly, such as to cut the wielded parts together with toroidal field coils, and to cut the vacuum vessel into two. After solving these problems, the disassembly completed without disaster and accident. This report presents the outline of the JT-60 disassembly, especially tokamak device.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2011

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Sasao, Eiji; Hikima, Ryoichi; Tanno, Takeo; Sanada, Hiroyuki; et al.

JAEA-Review 2013-018, 169 Pages, 2013/09

JAEA-Review-2013-018.pdf:15.71MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in 2011 fiscal year. This report shows the results of the investigation, construction and collaboration studies in fiscal year 2011, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.

Journal Articles

Observation of an unusual magnetic anomaly in the superconducting mixed state of heavy-fermion compound UBe$$_{13}$$ by precise dc magnetization measurements

Shimizu, Yusei*; Haga, Yoshinori; Ikeda, Yoichi*; Yanagisawa, Tatsuya*; Amitsuka, Hiroshi*

Physical Review Letters, 109(21), p.217001_1 - 217001_5, 2012/11

 Times Cited Count:15 Percentile:67.65(Physics, Multidisciplinary)

JAEA Reports

Mizunami Underground Research Laboratory Project, Plan for fiscal year 2012

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Kuboshima, Koji; Takeuchi, Ryuji; Mizuno, Takashi; Sato, Toshinori; et al.

JAEA-Review 2012-028, 31 Pages, 2012/08

JAEA-Review-2012-028.pdf:3.86MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU project is planned in three overlapping phases; Surface-based Investigation Phase (Phase I), Construction Phase (Phase II) and Operation Phase (Phase III). Currently, the project is under the Construction Phase and the Operation Phase. This document introduces the research and development activities planned for 2012 fiscal year based on the MIU Master Plan updated in 2010, construction plan and research collaboration plan, etc.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2010

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Ueno, Takashi; Tokuyasu, Shingo; Daimaru, Shuji; Takeuchi, Ryuji; et al.

JAEA-Review 2012-020, 178 Pages, 2012/06

JAEA-Review-2012-020.pdf:33.16MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II. And Phase III started in 2010 fiscal year. This report shows the results of the investigation, construction and collaboration studies in fiscal year 2010, as a part of the Phase II based on the MIU Master Plan updated in 2002.

80 (Records 1-20 displayed on this page)