Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Xu, P. G.; Ikeda, Yoshimasa*; Hakoyama, Tomoyuki*; Takamura, Masato*; Otake, Yoshie*; Suzuki, Hiroshi
Journal of Applied Crystallography, 53(2), p.444 - 454, 2020/04
Times Cited Count:8 Percentile:65.51(Chemistry, Multidisciplinary)Kumagai, Masayoshi*; Uchida, Tomohiro*; Murasawa, Kodai*; Takamura, Masato*; Ikeda, Yoshimasa*; Suzuki, Hiroshi; Otake, Yoshie*; Hama, Takayuki*; Suzuki, Shinsuke*
Materials Research Proceedings, Vol.6, p.57 - 62, 2018/10
Times Cited Count:0 Percentile:0.00(Metallurgy & Metallurgical Engineering)Murasawa, Kodai*; Takamura, Masato*; Kumagai, Masayoshi*; Ikeda, Yoshimasa*; Suzuki, Hiroshi; Otake, Yoshie*; Hama, Takayuki*; Suzuki, Shinsuke*
Materials Transactions, 59(7), p.1135 - 1141, 2018/07
Times Cited Count:8 Percentile:37.74(Materials Science, Multidisciplinary)Ikeda, Yoshimasa*; Takamura, Masato*; Hakoyama, Tomoyuki*; Otake, Yoshie*; Kumagai, Masayoshi*; Suzuki, Hiroshi
Tetsu To Hagane, 104(3), p.138 - 144, 2018/03
Times Cited Count:4 Percentile:20.86(Metallurgy & Metallurgical Engineering)Neutron engineering diffraction is a powerful technique which provides the information of the micro structure of steels in bulk-average, while X-ray diffraction or Electron backscatter diffraction can provide information only from the surface layer. However, such measurement using neutron diffraction is typically performed in a large facility such as a reactor and a synchrotron, while a compact neutron source has never been used for this purpose. Authors have recently developed a neutron diffractometer installed in Riken Accelerator driven compact Neutron Source (RANS) and succeeded in the measurement of texture evolution of a steel sheet. In this study, we made an attempt to measure the volume fraction of retained austenite by RANS. Background noise was carefully eliminated in order to detect as many diffraction peaks as possible with low flux neutrons. The volume fraction was estimated by Rietveld analysis. The accuracy of the measurement result was discussed by comparing with those obtained by a large neutron facility (J-PARC TAKUMI). The volume fraction obtained by RANS with reasonable measurement time, i.e. 30 to 300 min, showed only 1 to 2 % discrepancies with those obtained in J-PARC. These comparisons suggest that neutron diffraction by RANS is capable of quantitative analysis of the volume fraction of crystal phases, showing the possibility of practical use of an in-house compact neutron source in the industry.
Ikeda, Yoshimasa*; Taketani, Atsushi*; Takamura, Masato*; Sunaga, Hideyuki*; Kumagai, Masayoshi*; Oba, Yojiro*; Otake, Yoshie*; Suzuki, Hiroshi
Nuclear Instruments and Methods in Physics Research A, 833, p.61 - 67, 2016/10
Times Cited Count:38 Percentile:96.14(Instruments & Instrumentation)A compact accelerator-based neutron source has been lately discussed on engineering applications such as transmission imaging and small angle scattering as well as reflectometry. However, nobody considers using it for neutron diffraction experiment because of its low neutron flux. In this study, therefore, the neutron diffraction experiments are carried out using Riken Accelerator-driven Compact Neutron Source (RANS), to clarify the capability of the compact neutron source for neutron engineering diffraction. The diffraction pattern from a ferritic steel was successfully measured by suitable arrangement of the optical system to reduce the background noise, and it was confirmed that the recognizable diffraction pattern can be measured by the large sampling volume with 10 mm in cubic for an acceptable measurement time, i.e. 10 minutes. The minimum resolution of the 110 reflection for RANS is approximately 2.5 % at 8 s of the proton pulse width, which is insufficient to perform the strain measurement by neutron diffraction. The moderation time width at the wavelength corresponding to the 110 reflection is estimated to be approximately 30 s, which is the most dominant factor to determine the resolution. Therefore, refinements of the moderator system to decrease the moderation time are important to improve the resolution of the diffraction experiment using the compact neutron source. In contrast, the texture evolution due to plastic deformation was successfully observed by measuring a change in the diffraction peak intensity by RANS. Furthermore, the volume fraction of the austenite phase was also successfully evaluated by fitting the diffraction pattern using a Rietveld code. Consequently, RANS was proved to be capable for neutron engineering diffraction aiming for the easy access measurement of the texture and the amount of retained austenite.
Sunaga, Hideyuki*; Takamura, Masato*; Ikeda, Yoshimasa*; Otake, Yoshie*; Hama, Takayuki*; Kumagai, Masayoshi*; Suzuki, Hiroshi; Suzuki, Shinsuke*
Journal of Physics; Conference Series, 734(Part B), p.032027_1 - 032027_4, 2016/09
Times Cited Count:0 Percentile:0.00(Physics, Applied)A neutron diffraction measurement was performed to reveal microstructural aspects of the ductile fracture in ferritic steel. The diffraction patterns were continuously measured at the center of the reduced area while a tensile specimen was loaded under tension until the end of the fracture process. The measurement results showed that the volume fraction of (110)-oriented grains increased when the texture evolved as a result of plastic deformation. But the mechanism of texture evolution may be changed during necking, decreasing an increase rate of the volume fraction.
Takamura, Masato*; Ikeda, Yoshimasa*; Sunaga, Hideyuki*; Taketani, Atsushi*; Otake, Yoshie*; Suzuki, Hiroshi; Kumagai, Masayoshi*; Hama, Takayuki*; Oba, Yojiro*
Journal of Physics; Conference Series, 734(Part B), p.032047_1 - 032047_4, 2016/08
Times Cited Count:5 Percentile:85.55(Physics, Applied)Neutron diffraction is well known to be a useful technique for measuring a bulk texture of metallic materials taking advantage of a large penetration depth of the neutron beam. However, this technique has not been widely utilized for the texture measurement because large facilities like a reactor or a large accelerator are required in general. In contrast, RANS (Riken Accelerator-driven Compact Neutron Source) has been developed as a neutron source which can be used easily in laboratories. In this study, texture evolution in steel sheets with plastic deformation was successfully measured using RANS. The results show the capability of the compact neutron source for the analysis of the crystal structure of metallic materials, which leads us to a better understanding of plastic deformation behavior.
Adare, A.*; Afanasiev, S.*; Aidala, C.*; Ajitanand, N. N.*; Akiba, Yasuyuki*; Al-Bataineh, H.*; Alexander, J.*; Aoki, Kazuya*; Aphecetche, L.*; Armendariz, R.*; et al.
Physical Review C, 83(6), p.064903_1 - 064903_29, 2011/06
Times Cited Count:189 Percentile:99.42(Physics, Nuclear)Transverse momentum distributions and yields for , and in collisions at = 200 and 62.4 GeV at midrapidity are measured by the PHENIX experiment at the RHIC. We present the inverse slope parameter, mean transverse momentum, and yield per unit rapidity at each energy, and compare them to other measurements at different collisions. We also present the scaling properties such as and scaling and discuss the mechanism of the particle production in collisions. The measured spectra are compared to next-to-leading order perturbative QCD calculations.
Adare, A.*; Afanasiev, S.*; Aidala, C.*; Ajitanand, N. N.*; Akiba, Yasuyuki*; Al-Bataineh, H.*; Alexander, J.*; Aoki, Kazuya*; Aphecetche, L.*; Aramaki, Y.*; et al.
Physical Review C, 83(4), p.044912_1 - 044912_16, 2011/04
Times Cited Count:9 Percentile:52.33(Physics, Nuclear)Measurements of electrons from the decay of open-heavy-flavor mesons have shown that the yields are suppressed in Au+Au collisions compared to expectations from binary-scaled collisions. Here we extend these studies to two particle correlations where one particle is an electron from the decay of a heavy flavor meson and the other is a charged hadron from either the decay of the heavy meson or from jet fragmentation. These measurements provide more detailed information about the interaction between heavy quarks and the quark-gluon matter. We find the away-side-jet shape and yield to be modified in Au+Au collisions compared to collisions.
Xu, P. G.; Takamura, Masato*; Ikeda, Yoshimasa*; Kakuta, Ryunosuke*; Takahashi, Susumu*; Hakoyama, Tomoyuki*; Iwamoto, Chihiro*; Otake, Yoshie*; Suzuki, Hiroshi
no journal, ,
no abstracts in English
Takamura, Masato*; Iwamoto, Chihiro*; Xu, P. G.; Kakuta, Ryunosuke*; Kurihara, Ryo*; Hakoyama, Tomoyuki*; Ikeda, Yoshimasa*; Suzuki, Hiroshi; Otake, Yoshie*
no journal, ,
Xu, P. G.; Takamura, Masato*; Ikeda, Yoshimasa*; Kakuta, Ryunosuke*; Iwamoto, Chihiro*; Hakoyama, Tomoyuki*; Otake, Yoshie*; Suzuki, Hiroshi
no journal, ,