Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Utilization of gamma ray irradiation at the WASTEF Facility

Sano, Naruto; Yamashita, Naoki; Watanabe, Masaya; Tsukada, Manabu*; Hoshino, Kazutoyo*; Hirai, Koki; Ikegami, Yuta*; Tashiro, Shinsuke; Yoshida, Ryoichiro; Hatakeyama, Yuichi; et al.

JAEA-Technology 2023-029, 36 Pages, 2024/03

JAEA-Technology-2023-029.pdf:2.47MB

At the Waste Safety Testing Facility (WASTEF), the gamma ray irradiation device "Gamma Cell 220" was relocated from the 4th research building of the Nuclear Science Research Institute in FY2019, and the use of gamma ray irradiation has begun. Initially, Fuel Cycle Safety Research Group, Fuel Cycle Safety Research Division, Nuclear Safety Research Center, Sector of Nuclear Safety Research and Emergency Preparedness, the owner of this device, conducted the tests as the main user, but since 2022, other users, including those outside the organization, have started using it. The gamma ray irradiation device "Gamma Cell 220" is manufactured by Nordion International Inc. in Canada. Since it was purchased in 1989, the built-in 60Co radiation source has been updated once, and safety research related to nuclear fuel cycles, etc. It is still used for this purpose to this day. This report summarizes the equipment overview of the gamma ray irradiation device "Gamma Cell 220", its permits and licenses at WASTEF, usage status, maintenance and inspection, and future prospects.

Journal Articles

Upgrade of the 3-MeV linac for testing of accelerator components at J-PARC

Kondo, Yasuhiro; Hirano, Koichiro; Ito, Takashi; Kikuzawa, Nobuhiro; Kitamura, Ryo; Morishita, Takatoshi; Oguri, Hidetomo; Okoshi, Kiyonori; Shinozaki, Shinichi; Shinto, Katsuhiro; et al.

Journal of Physics; Conference Series, 1350, p.012077_1 - 012077_7, 2019/12

 Times Cited Count:1 Percentile:51.97(Physics, Particles & Fields)

We have upgraded a 3-MeV linac at J-PARC. The ion source is same as the J-PARC linac's, and the old 30-mA RFQ is replaced by a spare 50-mA RFQ, therefore, the beam energy is 3 MeV and the nominal beam current is 50 mA. The main purpose of this system is to test the spare RFQ, but also used for testing of various components required in order to keep the stable operation of the J-PARC accelerator. The accelerator has been already commissioned, and measurement programs have been started. In this paper, present status of this 3-MeV linac is presented.

Journal Articles

Mercury target thermal hydraulic design for JAERI spallation neutron source

Kaminaga, Masanori; Haga, Katsuhiro; Kinoshita, Hidetaka; Terada, Atsuhiko*; Koikegami, Hajime*; Hino, Ryutaro

Proceedings of 11th International Conference on Nuclear Engineering (ICONE-11) (CD-ROM), 7 Pages, 2003/04

1MW pulsed spallation neutron source using a mercury target will be constructed in order to produce high-intensity neutrons for use in the fields of life and material sciences. The mercury target is proposed using a high-energy (3.0GeV) proton beam with a current of 0.333mA and operating at 25 Hz with a pulse duration less than 1$$mu$$s. A cross flow type (CFT) mercury target has been designed in order to distribute mercury flow according to an axial heat generation distribution caused by spallation reaction, based on the thermal hydraulic analytical results of 3GeV, 1MW proton beam injection by using the STAR-CD code. This paper presents the final CFD analytical results. In the analysis, an inlet temperature of 50$$^{circ}$$C and an inlet mercury velocity of 1.0m/s were assumed. As results, a maximum velocity of 2.48m/s was observed near the front end of the outlet plenum and a maximum of 125.5$$^{circ}$$C was observed near the beam window where the volumetric heat generation rate was relatively large. The maximum temperature is far below the mercury saturation temperature of 356$$^{circ}$$C under atmospheric pressure. This result satisfied the thermal-hydraulic design criteria of "Maximum mercury temperature in the target shall be less than 300$$^{circ}$$C".

3 (Records 1-3 displayed on this page)
  • 1