Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Shim, S.-I.*; Yoshida, Kazuki; Ogata, Kazuyuki*
Journal of the Physical Society of Japan, 92(9), p.094201_1 - 094201_8, 2023/09
We systematically investigate the absorption effects on the cross sections of the nucleon and alpha knockout reactions. To do this, we calculate the ratio of the cross sections of the distorted-wave impulse approximation and plane-wave impulse approximation and examine its dependence on the mass number and single-particle orbital of the knocked-out particles.
Chen, S.*; Browne, F.*; Doornenbal, P.*; Lee, J.*; Obertelli, A.*; Tsunoda, Yusuke*; Otsuka, Takaharu*; Chazono, Yoshiki*; Hagen, G.*; Holt, J. D.*; et al.
Physics Letters B, 843, p.138025_1 - 138025_7, 2023/08
Gamma decays were observed in Ca and
Ca following quasi-free one-proton knockout reactions from
Sc. For
Ca, a
ray transition was measured to be 1456(12) keV, while for
Ca an indication for a transition was observed at 1115(34) keV. Both transitions were tentatively assigned as the
decays. A shell-model calculation in a wide model space with a marginally modified effective nucleon-nucleon interaction depicts excellent agreement with experiment for
level energies, two-neutron separation energies, and reaction cross sections, corroborating the formation of a new nuclear shell above the N = 34 shell. Its constituents, the
and
orbitals, are almost degenerate. This degeneracy precludes the possibility for a doubly magic
Ca and potentially drives the dripline of Ca isotopes to
Ca or even beyond.
Wang, H.*; Yasuda, Masahiro*; Kondo, Yosuke*; Nakamura, Takashi*; Tostevin, J. A.*; Ogata, Kazuyuki*; Otsuka, Takaharu*; Poves, A.*; Shimizu, Noritaka*; Yoshida, Kazuki; et al.
Physics Letters B, 843, p.138038_1 - 138038_9, 2023/08
Detailed -ray spectroscopy of the exotic neon isotope
Ne has been performed using the one-neutron removal reaction from
Ne. Based on an analysis of parallel momentum distributions, a level scheme with spin-parity assignments has been constructed for
Ne and the negative-parity states are identified for the first time. The measured partial cross sections and momentum distributions reveal a significant intruder p-wave strength providing evidence of the breakdown of the N = 20 and N = 28 shell gaps. Only a weak, possible f-wave strength was observed to bound final states. Large-scale shell-model calculations with different effective interactions do not reproduce the large p-wave and small f-wave strength observed experimentally, indicating an ongoing challenge for a complete theoretical description of the transition into the island of inversion along the Ne isotopic chain.
Periez, R.*; Brovchenko, I.*; Jung, K. T.*; Kim, K. O.*; Liptak, L.*; Little, A.*; Kobayashi, Takuya; Maderich, V.*; Min, B. I.*; Suh, K. S.*
Journal of Environmental Radioactivity, 261, p.107138_1 - 107138_8, 2023/05
Times Cited Count:0 Percentile:0(Environmental Sciences)Lagrangian models present several advantages over Eulerian models to simulate the transport of radionuclides in the aquatic environment in emergency situations. A radionuclide release is simulated as a number of particles whose trajectories are calculated along time and thus these models do not require a spatial discretization. In this paper we investigate the dependence of a Lagrangian model output with the grid spacing which is used to calculate concentrations from the final distribution of particles, with the number of particles in the simulation and with the interpolation schemes which are required because of the discrete nature of the water circulation data used to feed the model.
Lee, S.*; Nakata, Koki; Tchernyshyov, O.*; Kim, S. K.*
Physical Review B, 107(18), p.184432_1 - 184432_12, 2023/05
Times Cited Count:1 Percentile:0(Materials Science, Multidisciplinary)We theoretically investigate the interaction between magnons and a Skyrmion-textured domain wall in a two-dimensional antiferromagnet and elucidate the resultant properties of magnon transport. Using supersymmetric quantum mechanics, we solve the scattering problem of magnons on top of the domain wall and obtain the exact solutions of propagating and bound magnon modes. Then, we find their properties of reflection and refraction in the Skyrmion-textured domain wall, where magnons experience an emergent magnetic field due to its non-trivial spin texture-induced effective gauge field. Finally, we show that the thermal transport decreases as the domain wall's chirality increases. Our results suggest that the thermal transport of an antiferromagnet is tunable by modulating the Skyrmion charge density of the domain wall.
Kwon, H.*; Sathiyamoorthi, P.*; Gangaraju, M. K.*; Zargaran, A.*; Wang, J.*; Heo, Y.-U.*; Harjo, S.; Gong, W.; Lee, B.-J.*; Kim, H. S.*
Acta Materialia, 248, p.118810_1 - 118810_12, 2023/04
Times Cited Count:0 Percentile:0.01(Materials Science, Multidisciplinary)Pohl, T.*; Sun, Y. L.*; Obertelli, A.*; Lee, J.*; Gmez-Ramos, M.*; Ogata, Kazuyuki*; Yoshida, Kazuki; Cai, B. S.*; Yuan, C. X.*; Brown, B. A.*; et al.
Physical Review Letters, 130(17), p.172501_1 - 172501_8, 2023/04
Times Cited Count:2 Percentile:94.39(Physics, Multidisciplinary)We report on the first proton-induced single proton- and neutron-removal reactions from the neutron deficient O nucleus with large Fermi-surface asymmetry at
100 MeV/nucleon. Our results provide the first quantitative contributions of multiple reaction mechanisms including the quasifree knockout, inelastic scattering, and nucleon transfer processes. It is shown that the inelastic scattering and nucleon transfer, usually neglected at such energy regime, contribute about 50% and 30% to the loosely bound proton and deeply bound neutron removal, respectively.
Woo, W.*; Kim, Y. S.*; Chae, H. B.*; Lee, S. Y.*; Jeong, J. S.*; Lee, C. M.*; Won, J. W.*; Na, Y. S.*; Kawasaki, Takuro; Harjo, S.; et al.
Acta Materialia, 246, p.118699_1 - 118699_13, 2023/03
Times Cited Count:4 Percentile:98.77(Materials Science, Multidisciplinary)Im, S.*; Jee, H.*; Suh, H.*; Kanematsu, Manabu*; Morooka, Satoshi; Choe, H.*; Nishio, Yuhei*; Machida, Akihiko*; Kim, J.*; Lim, S.*; et al.
Construction and Building Materials, 365, p.130034_1 - 130034_18, 2023/02
Times Cited Count:3 Percentile:97.57(Construction & Building Technology)Shibata, Goro; Won, C.*; Kim, J.*; Nonaka, Yosuke*; Ikeda, Keisuke*; Wan, Y.*; Suzuki, Masahiro*; Koide, Tsuneharu*; Tanaka, Arata*; Cheong, S.-W.*; et al.
Photon Factory Activity Report 2022 (Internet), 2 Pages, 2023/00
no abstracts in English
Wei, D.*; Gong, W.; Tsuru, Tomohito; Lobzenko, I.; Li, X.*; Harjo, S.; Kawasaki, Takuro; Do, H.-S.*; Bae, J. W.*; Wagner, C.*; et al.
International Journal of Plasticity, 159, p.103443_1 - 103443_18, 2022/12
Times Cited Count:12 Percentile:96.77(Engineering, Mechanical)Akuzawa, Tadashi*; Kim, S.-Y.*; Kubota, Masahiko*; Wu, H.*; Watanabe, So; Sano, Yuichi; Takeuchi, Masayuki; Arai, Tsuyoshi*
Journal of Radioanalytical and Nuclear Chemistry, 331(12), p.5851 - 5858, 2022/12
Times Cited Count:0 Percentile:0.01(Chemistry, Analytical)Elekes, Z.*; Juhsz, M. M.*; Sohler, D.*; Sieja, K.*; Yoshida, Kazuki; Ogata, Kazuyuki*; Doornenbal, P.*; Obertelli, A.*; Achouri, N. L.*; Baba, Hidetada*; et al.
Physical Review C, 106(6), p.064321_1 - 064321_10, 2022/12
Times Cited Count:0 Percentile:0.02(Physics, Nuclear)The low-lying level structure of V and
V was investigated for the first time. The neutron knockout reaction and inelastic proton scattering were applied for
V while the neutron knock-out reaction provided the data for
V. Four and five new transitions were determined for
V and
V, respectively. Based on the comparison to our shell-model calculations using the Lenzi-Nowacki-Poves-Sieja (LNPS) interaction, three of the observed
rays for each isotope could be placed in the level scheme and assigned to the decay of the first 11/2
and 9/2
levels. The (
,
) excitation cross sections for
V were analyzed by the coupled-channels formalism assuming quadrupole plus hexadecapole deformations. Due to the role of the hexadecapole deformation,
V could not be unambiguously placed on the island of inversion.
Enciu, M.*; Liu, H. N.*; Obertelli, A.*; Doornenbal, P.*; Nowacki, F.*; Ogata, Kazuyuki*; Poves, A.*; Yoshida, Kazuki; Achouri, N. L.*; Baba, Hidetada*; et al.
Physical Review Letters, 129(26), p.262501_1 - 262501_7, 2022/12
Times Cited Count:0 Percentile:0(Physics, Multidisciplinary)The one-neutron knockout from Ca was performed at
230 MeV/nucleon combined with prompt
spectroscopy. The momentum distributions corresponding to the removal of
and
neutrons were measured. The cross sections are consistent with a shell closure at the neutron number
, found as strong as at
and
in Ca isotopes from the same observables. The analysis of the momentum distributions leads to a difference of the root-mean-square radii of the neutron
and
orbitals of 0.61(23) fm, in agreement with the modified-shell-model prediction of 0.7 fm suggesting that the large root-mean-square radius of the
orbital in neutron-rich Ca isotopes is responsible for the unexpected linear increase of the charge radius with the neutron number.
Fujita, Manami; Hasegawa, Shoichi; Hosomi, Kenji; Ichikawa, Masaya; Ichikawa, Yudai; Kim, S.; Nanamura, Takuya; Sako, Hiroyuki; Tamura, Hirokazu; Yamamoto, Takeshi; et al.
Progress of Theoretical and Experimental Physics (Internet), 2022(12), p.123D01_1 - 123D01_17, 2022/12
Times Cited Count:0 Percentile:0.01(Physics, Multidisciplinary)Yoneda, Yasuhiro; Kim, S.*; Mori, Shigeo*; Wada, Satoshi*
Japanese Journal of Applied Physics, 61(SN), p.SN1022_1 - SN1022_10, 2022/11
Times Cited Count:1 Percentile:0(Physics, Applied)Local structural analysis of the (1-) BiFeO
-
BaTiO
solid solution was performed by PDF analysis of the data obtained in the synchrotron radiation high-energy X-ray diffraction experiment. First, when XAFS experiments were performed and sample screening was performed, it was found that structural fluctuations were large in the BiFeO
-rich composition. Therefore, PDF analysis of a sample with BiFeO
-rich composition was performed. As a result, it was found that although the average structure is a cubic structure, the local structure can be reproduced with a rhombohedral crystal structure, and there is a displacement that breaks the symmetry of the rhombohedral structure in a composition with a large fluctuation.
Kim, G.*; Im, S.*; Jee, H.*; Suh, H.*; Cho, S.*; Kanematsu, Manabu*; Morooka, Satoshi; Koyama, Taku*; Nishio, Yuhei*; Machida, Akihiko*; et al.
Cement and Concrete Research, 159, p.106869_1 - 106869_17, 2022/09
Times Cited Count:3 Percentile:63.89(Construction & Building Technology)Yamanaka, Takamitsu*; Rahman, S.*; Nakamoto, Yuki*; Hattori, Takanori; Jang, B. G.*; Kim, D. Y.*; Mao, H.-K.*
Journal of Physics and Chemistry of Solids, 167, p.110721_1 - 110721_10, 2022/08
Times Cited Count:1 Percentile:30.35(Chemistry, Multidisciplinary)High-pressure neutron diffraction proved that MnFeO
and Mn
FeO
spinels transform into CaMn
O
-type structure above 18 GPa and 14 GPa, respectively. The transition pressure of Mn
Fe
O
solutions decreases with increasing Mn content. Synchrotron X-ray M
ssbauer experiments revealed that Fe
and Fe
distribution at the tetrahedral (A) and octahedral (B) sites in the spinel structure changes with pressure. MnFe
O
and Mn
FeO
spinels are ferrimagnetic and the CaMn
O
-type phase is paramagnetic. The temperature dependence of resistivity indicates that both spinels are semiconductors wherein electrons hop between cations at the A and B sites. A pressure-induced shortening of B-B distance promoted conduction via greater electron mobility between adjacent B cations. The Fe
and Fe
occupancies at the B sites in MnFe
O
are much larger than those in Mn
FeO
. The CaMn
O
-type phase is metallic. Theoretical calculation confirmed the metallic character and Fe d-orbitals strongly renormalized compared to Mn d-orbitals.
Imaizumi, Yuya; Aoyagi, Mitsuhiro; Kamiyama, Kenji; Matsuba, Kenichi; Akayev, A. S.*; Mikisha, A. V.*; Baklanov, V. V.*; Vurim, A. D.*
Dai-26-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2022/07
The cooling of the residual core materials after the fuel discharge from the SFR core in the core disruptive accident can significantly affect the distribution fraction of the core materials which is an important factor for the in-vessel retention (IVR). The cooling of the residual core materials is called "in-place cooling". For the evaluation of the in-place cooling, behavior in a SFR core was simulated by SIMMER-III, and method of phenomena identification and ranking table (PIRT) was applied based on the analysis result. Experiment which focuses on the thermal-hydraulic phenomena which were extracted by the PIRT was conducted in the framework of EAGLE-3 project. Continuous oscillation of sodium level which can occur in the phase of in-place cooling of SFRs was observed in the experiment, and analysis by the SIMMER-III was conducted. By investigation of the analysis result, difference between the experiment and analysis results was revealed to be due to remaining and occupation of non-condensable gas above the sodium level which would be unrealistic in the experiment. Gas mixture model between non-condensable gas and sodium vapor was developed to solve this problem, and coincidence between experiment and analysis results was largely improved by this new model.
Walter, H.*; Colonna, M.*; Cozma, D.*; Danielewicz, P.*; Ko, C. M.*; Kumar, R.*; Ono, Akira*; Tsang, M. Y. B*; Xu, J.*; Zhang, Y.-X.*; et al.
Progress in Particle and Nuclear Physics, 125, p.103962_1 - 103962_90, 2022/07
Times Cited Count:32 Percentile:96.94(Physics, Nuclear)Transport models are the main method to obtain physics information on the nuclear equation of state and in-medium properties of particles from low to relativistic-energy heavy-ion collisions. The Transport Model Evaluation Project (TMEP) has been pursued to test the robustness of transport model predictions to reach consistent conclusions from the same type of physical model. To this end, calculations under controlled conditions of physical input and set-up were performed by the various participating codes. These included both calculations of nuclear matter in a periodic box, which test individual ingredients of a transport code, and calculations of complete collisions of heavy ions. Over the years, five studies were performed within this project. They show, on one hand, that in box calculations the differences between the codes can be well understood and a convergence of the results can be reached. These studies also highlight the systematic differences between the two families of transport codes, known under the names of Boltzmann-Uehling-Uhlenbeck (BUU) and Quantum Molecular Dynamics (QMD) type codes. On the other hand, there still exist substantial differences when these codes are applied to real heavy-ion collisions. The results of transport simulations of heavy-ion collisions will have more significance if codes demonstrate that they can verify benchmark calculations such as the ones studied in these evaluations.