Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Nirei, Masami; Kofu, Maiko; Nakajima, Kenji; Kikuchi, Tatsuya*; Kawamura, Seiko; Murai, Naoki; Harada, Masahide; Inamura, Yasuhiro
Journal of Neutron Research, 26(2-3), p.75 - 82, 2024/09
Kumada, Takayuki; Nakagawa, Hiroshi; Miura, Daisuke; Sekine, Yurina; Motokawa, Ryuhei; Hiroi, Kosuke; Inamura, Yasuhiro; Oku, Takayuki; Oishi, Kazuki*; Morikawa, Toshiaki*; et al.
Hamon, 34(2), p.50 - 53, 2024/05
Spin-contrast-variation (SCV) small-angle neutron scattering (SANS) enabled us to determine structure of nano-ice crystals that were generated in rapidly frozen sugar solution. In the frozen glucose solution, we found that the nano-ice crystals formed a planar structure with a radius larger than several tens of nanometers and a thickness of 2-3 nm, which was close to the critical nucleation size of ice crystals in supercooled water. This result suggests that the glucose molecules were preferentially bound to a specific face of nano-ice crystals, and then blocked the crystal growth perpendicular to that face.
Inamura, Yasuhiro
JAEA-Testing 2023-002, 80 Pages, 2023/12
"Utsusemi" is a suite of software used to process data obtained from measurements of neutron scattering experiments at the Materials and Life Science Experimental Facility (MLF), J-PARC. To directly obtain the physical quantities which scientists want to get from the data produced by instruments at MLF, many processes are required, such as creating histogram format data, easily visualizing and converting units and correcting intensity adapting the instrument conditions. "Utsusemi" software consists of many software components, many functions for data processing, graphical interface software for executing Utsusemi functions, data visualization applications, and so on. "Utsusemi" has already played an important role in data processing and has been widely employed in MLF beamlines. This document describes how to install the "Utsusemi" software on each operating system to be of help of instrument staff and users who want to process data by themselves. Installation of "Utsusemi" on Windows and macOS requires only general knowledge of working with PC applications according to this document.
Kumada, Takayuki; Nakagawa, Hiroshi; Miura, Daisuke; Sekine, Yurina; Motokawa, Ryuhei; Hiroi, Kosuke; Inamura, Yasuhiro; Oku, Takayuki; Oishi, Kazuki*; Morikawa, Toshiaki*; et al.
Journal of Physical Chemistry Letters (Internet), 14(34), p.7638 - 7643, 2023/08
Times Cited Count:0 Percentile:0.01(Chemistry, Physical)The structure of nano-ice crystals in rapidly frozen glucose solution was elucidated by using spin-contrast-variation small-angle neutron scattering, which distinguishes the nano-ice crystal signal from the frozen amorphous solution signal by the polarization-dependent neutron scattering. The analysis revealed that the nano-ice crystals form a planar structure with a diameter exceeding tens of nanometers and a thickness of 1 nm, which is close to the critical nucleation size. This result suggests that the glucose molecules are preferentially bound to a specific face of nano-ice crystals, and then block the crystal growth perpendicular to that face.
Iwase, Hiroki*; Akamatsu, Masaaki*; Inamura, Yasuhiro; Sakaguchi, Yoshifumi*; Morikawa, Toshiaki*; Kasai, Satoshi*; Ouchi, Keiichi*; Kobayashi, Kazuki*; Sakai, Hideki*
Journal of Applied Crystallography, 56(1), p.110 - 115, 2023/02
Times Cited Count:2 Percentile:78.87(Chemistry, Multidisciplinary)With the increasing importance of light-responsive materials, it is vital to analyze the relationship between function and structural changes induced by light irradiation. Small-angle scattering (SAS) is effective for such structural analysis. However, quantitatively capturing local molecular structure formation and molecular reactions at a scale of less than 1 nm via SAS is difficult. In this study, to analyze the structure of non-equilibrium phenomena in light-responsive materials, a new sample environment has been developed for a time-of-flight small- and wide-angle neutron scattering instrument (TAIKAN), comprising a UV-Vis irradiation system, UV-Vis absorption measurement equipment and photodetector. Simultaneous measurement of small-angle neutron scattering and UV-Vis absorption was achieved. This system was used to demonstrate the in situ observation of UV-Vis irradiation-induced structural change of micelles formed by a light-responsive surfactant sample in an aqueous solution.
Sato, Setsuo*; Kajimoto, Ryoichi; Inamura, Yasuhiro
Journal of Neutron Research, 24(3-4), p.427 - 434, 2023/01
Iida, Kazuki*; Kodama, Katsuaki; Inamura, Yasuhiro; Nakamura, Mitsutaka; Chang, L.-J.*; Shamoto, Shinichi
Scientific Reports (Internet), 12, p.20663_1 - 20663_7, 2022/12
Times Cited Count:1 Percentile:24.98(Multidisciplinary Sciences)Spin excitation of an ilmenite FeTiO powder sample is measured by time-of-flight inelastic neutron scattering. The dynamic magnetic pair-density function is obtained from the dynamic magnetic structure factor by the Fourier transformation.
Kajimoto, Ryoichi; Nakamura, Mitsutaka; Kamazawa, Kazuya*; Inamura, Yasuhiro; Iida, Kazuki*; Ikeuchi, Kazuhiko*; Ishikado, Motoyuki*
EPJ Web of Conferences, 272, p.02007_1 - 02007_8, 2022/11
Tatsumi, Kazuyoshi; Inamura, Yasuhiro; Kofu, Maiko; Kiyanagi, Ryoji; Shimazaki, Hideaki*
Journal of Applied Crystallography, 55(3), p.533 - 543, 2022/06
Times Cited Count:0 Percentile:0.01(Chemistry, Multidisciplinary)A data-driven bin-width optimization for the histograms of measured data sets based on inhomogeneous Poisson processes was developed in a neurophysiology study [Shimazaki & Shinomoto (2007). Neural Comput. 19, 1503-1527], and a successive study [Muto et al. (2019). J. Phys. Soc. Jpn, 88, 044002] proposed its application to inelastic neutron scattering (INS) data. In the present study, the results of the method on experimental INS time-of-flight data collected under different measurement conditions from a copper single crystal are validated. The extrapolation of the statistics on a given data set to other data sets with different total counts precisely infers the optimal bin widths on the latter. The histograms with the optimized bin widths statistically verify two fine-spectral feature examples in the energy and momentum transfer cross sections: (i) the existence of the phonon band gaps; and (ii) the number of plural phonon branches located close to each other. This indicates that the applied method helps in the efficient and rigorous observation of spectral structures important in physics and materials science like novel forms of magnetic excitation and phonon states correlated to lattice thermal conductivities.
Hayashi, Koichi*; Lederer, M.*; Fukumoto, Yohei*; Goto, Masashi*; Yamamoto, Yuta*; Happo, Naohisa*; Harada, Masahide; Inamura, Yasuhiro; Oikawa, Kenichi; Oyama, Kenji*; et al.
Applied Physics Letters, 120(13), p.132101_1 - 132101_6, 2022/03
Times Cited Count:0 Percentile:0.00(Physics, Applied)Saito, Wataru*; Hayashi, Kei*; Huang, Z.*; Sugimoto, Kazuya*; Oyama, Kenji*; Happo, Naohisa*; Harada, Masahide; Oikawa, Kenichi; Inamura, Yasuhiro; Hayashi, Koichi*; et al.
ACS Applied Energy Materials (Internet), 4(5), p.5123 - 5131, 2021/05
Times Cited Count:12 Percentile:65.55(Chemistry, Physical)Okudaira, Takuya; Ueda, Yuki; Hiroi, Kosuke; Motokawa, Ryuhei; Inamura, Yasuhiro; Takata, Shinichi; Oku, Takayuki; Suzuki, Junichi*; Takahashi, Shingo*; Endo, Hitoshi*; et al.
Journal of Applied Crystallography, 54(2), p.548 - 556, 2021/04
Times Cited Count:3 Percentile:43.61(Chemistry, Multidisciplinary)Neutron polarization analysis (NPA) for small-angle neutron scattering (SANS) experiments using a pulsed neutron source was successfully achieved by applying a He spin filter as a spin analyzer for the scattered neutrons. The He spin filter covers a sufficient solid angle for performing SANS experiments, and the relaxation time of the He polarization is sufficient for continuous use over a few days, thus reaching the typical duration required for a complete set of SANS experiments. Although accurate evaluation of the incoherent neutron scattering, which is predominantly attributable to hydrogen atoms in samples, is practically difficult using calculations based on the sample elemental composition, the developed NPA approach with consideration of the influence of multiple neutron scattering enabled reliable decomposition of the SANS intensity distribution into the coherent and incoherent scattering components. To date, NPA has not been well established as a standard technique for SANS experiments at pulsed neutron sources. This work is anticipated to greatly contribute to the accurate determination of the coherent neutron scattering component for scatterers in various types of organic sample systems in SANS experiments at J-PARC.
Kawakita, Yukinobu; Kikuchi, Tatsuya*; Tahara, Shuta*; Nakamura, Mitsutaka; Inamura, Yasuhiro; Maruyama, Kenji*; Yamauchi, Yasuhiro*; Kawamura, Seiko; Nakajima, Kenji
JPS Conference Proceedings (Internet), 33, p.011071_1 - 011071_6, 2021/03
CuI is a well-known superionic conductor in a high temperature solid phase where the mobile cations migrate between interstitial sites in the f.c.c. sublattice formed by iodine ions. Even in the molten state, it shows several features suggesting collective or cooperative ionic motion. MD results show that Cu diffuses much faster than I. The Cu-Cu partial structure factor have a FSDP which indicates a medium-range ordering of Cu ions. Moreover the Cu-Cu partial pair distribution deeply penetrates into the nearest neighboring Cu-I shell. To reveal origin such anomalous behaviors of molten CuI, we performed quaiselastic neutron scattering (QENS) by the disk-chopper spectrometer AMATERAS at MLF, J-PARC. To interpret the total dynamic structure factor obtained from coherent QENS, the mode distribution analysis was applied. It is found that the motion of iodine is a kind of fluctuating within an almost local area while Cu ions diffuse much faster than iodine ions.
Nakajima, Kenji; Kawamura, Seiko; Kofu, Maiko; Murai, Naoki; Inamura, Yasuhiro; Kikuchi, Tatsuya*; Wakai, Daisuke*
JPS Conference Proceedings (Internet), 33, p.011089_1 - 011089_7, 2021/03
The recent update of AMATERAS, a cold-neutron disk-chopper spectrometer at Japan Proton Accelerator Research Complex (J-PARC), is reported. AMATERAS has been operating for a decade. Since 2017, some updates have been done or are underway, which include installing new detectors, replacing the vacuum system of the scattering chamber, and other works. We are also working on the re-investigation of the resolution function. Demonstration measurements were carried out at 1MW test operations done in 2018 and 2019. Plans of upgrading the spectrometer are currently being considered.
Nakagawa, Hiroshi; Yonetani, Yoshiteru*; Nakajima, Kenji; Kawamura, Seiko; Kikuchi, Tatsuya*; Inamura, Yasuhiro; Kataoka, Mikio*; Kono, Hidetoshi*
JPS Conference Proceedings (Internet), 33, p.011101_1 - 011101_6, 2021/03
Hydration water dynamics were measured by quasi-elastic neutron scattering with HnO/DO contrast for two DNA dodecamers, 5'CGCGCGCG'3 and 5'CGCGCGCG'3, which have been computationally shown to be structurally rigid and flexible, respectively. The dynamical transitions of the hydration water as well as DNA were observed for both sequences at approximately 240 K. Above the transition temperature, the mean square displacements of the hydration water for the rigid sequence were smaller than those for the flexible one. Furthermore, the relaxation time of the hydration water was longer in the rigid DNA than in the flexible DNA. We suggest that hydration water dynamics on the picosecond timescale are associated with sequence-dependent deformability of DNA.
Kajimoto, Ryoichi; Nakamura, Mitsutaka; Iida, Kazuki*; Kamazawa, Kazuya*; Ikeuchi, Kazuhiko*; Inamura, Yasuhiro; Ishikado, Motoyuki*
Journal of Neutron Research, 22(2-3), p.99 - 107, 2020/10
Uechi, Shoichi*; Oyama, Kenji*; Fukumoto, Yohei*; Kanazawa, Yuki*; Happo, Naohisa*; Harada, Masahide; Inamura, Yasuhiro; Oikawa, Kenichi; Matsuhra, Wataru*; Iga, Fumitoshi*; et al.
Physical Review B, 102(5), p.054104_1 - 054104_10, 2020/08
Times Cited Count:7 Percentile:42.63(Materials Science, Multidisciplinary)Iida, Kazuki*; Yoshida, Hiroyuki*; Nakao, Akiko*; Jeschke, H. O.*; Iqbal, Y.*; Nakajima, Kenji; Kawamura, Seiko; Munakata, Koji*; Inamura, Yasuhiro; Murai, Naoki; et al.
Physical Review B, 101(22), p.220408_1 - 220408_6, 2020/06
Times Cited Count:22 Percentile:80.37(Materials Science, Multidisciplinary)Crystal and magnetic structures of the mineral centennialite CaCu(OD)Cl 0.6DO are investigated by means of synchrotron X-ray diffraction and neutron diffraction measurements complemented by density functional theory (DFT) and pseudofermion functional renormalization group (PFFRG) calculations. In CaCu(OD)Cl 0.6DO, Cu ions form a geometrically perfect kagome network with antiferromagnetic . No intersite disorder between Cu and Ca ions is detected. CaCu(OD)Cl 0.6DO enters a magnetic long-range ordered state below = 7.2 K, and the =0 magnetic structure with negative vector spin chirality is obtained. The ordered moment at 0.3 K is suppressed to 0.58(2)B. Our DFT calculations indicate the presence of antiferromagnetic and ferromagnetic superexchange couplings of a strength which places the system at the crossroads of three magnetic orders (at the classical level) and a spin- PFFRG analysis shows a dominance of =0 type magnetic correlations, consistent with and indicating proximity to the observed =0 spin structure. The results suggest that this material is located close to a quantum critical point and is a good realization of a -- kagome antiferromagnet.
Iida, Kazuki*; Kofu, Maiko; Suzuki, Katsuhiro*; Murai, Naoki; Kawamura, Seiko; Kajimoto, Ryoichi; Inamura, Yasuhiro; Ishikado, Motoyuki*; Hasegawa, Shunsuke*; Masuda, Takatsugu*; et al.
Journal of the Physical Society of Japan, 89(5), p.053702_1 - 053702_5, 2020/05
Times Cited Count:19 Percentile:80.03(Physics, Multidisciplinary)Ueda, Hiroshi*; Onoda, Shigeki*; Yamaguchi, Yasuhiro*; Kimura, Tsuyoshi*; Yoshizawa, Daichi*; Morioka, Toshiaki*; Hagiwara, Masayuki*; Hagihara, Masato*; Soda, Minoru*; Masuda, Takatsugu*; et al.
Physical Review B, 101(14), p.140408_1 - 140408_6, 2020/04
Times Cited Count:4 Percentile:25.35(Materials Science, Multidisciplinary)