Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 59

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Application of virtual tour for online training safeguards exercises

Sekine, Megumi; Sukegawa, Hidetoshi; Ishikuro, Yasuhiro; Oyama, Koji; Obata, Takashi; Hayashi, Kazuhiko; Inoue, Naoko

Proceedings of INMM & ESARDA Joint Virtual Annual Meeting (Internet), 10 Pages, 2021/08

The Integrated Support Center for Nuclear Nonproliferation and Nuclear Security (ISCN) of the Japan Atomic Energy Agency (JAEA) developed the virtual tour of a reference nuclear facility. The developed virtual tour was applied to the Design Information Questionnaire (DIQ) workshop exercise for the online SSAC course held in November 2020 in connection with the IAEA safeguards-related regional training course. Also, it was applied to the Complementary Access (CA) exercise for the online workshop of the Nuclear Security and Safeguards Project under the Forum for Nuclear Cooperation in Asia (FNCA), held in February 2021. The workshop exercises have been implemented for in-person format however due to COVID-19 pandemic, a virtual tour was applied. The virtual tour was found to be a strong tool not only for online training as an alternative for a facility tour, but also considered to be more advantageous even for the in-person training. The developed virtual tour of a reference nuclear facility, going to shut down, can find potentially varied applications. The paper describes how to create a virtual tour of a reference research reactor facility for the DIQ and CA exercises respectively which have different learning objectives. It emphasizes how the features of the reference facility were captured and the challenges encountered to convey to the training participants the importance of providing the required design information while not being physically present at the facility. It also show the advantage of using the same virtual tour to describe the safeguards-related verification activities of a complementary access. Virtual tours can be applied to a variety of training.

Journal Articles

Origin of non-uniformity of the source plasmas in JT-60 negative ion source

Yoshida, Masafumi; Hanada, Masaya; Kojima, Atsushi; Inoue, Takashi; Kashiwagi, Mieko; Grisham, L. R.*; Akino, Noboru; Endo, Yasuei; Komata, Masao; Mogaki, Kazuhiko; et al.

Plasma and Fusion Research (Internet), 8(Sp.1), p.2405146_1 - 2405146_4, 2013/11

Distributions of H$$^{0}$$ and H$$^{+}$$ in the source plasmas produced at the end-plugs of JT-60 negative ions source were measured by Langmuir probes and emission spectroscopy in order to experimentally investigate the cause of lower density of the negative ions extracted from end-plugs in the source. Densities of H$$^{0}$$ and H$$^{+}$$ in end-plugs of the plasma grid in the source were compared with those in the center regions. As a result, lower density of the negative ion at the edge was caused by lower beam optics due to lower and higher density of the H$$^{0}$$ and H$$^{+}$$.

Journal Articles

Progress in development and design of the neutral beam injector for JT-60SA

Hanada, Masaya; Kojima, Atsushi; Tanaka, Yutaka; Inoue, Takashi; Watanabe, Kazuhiro; Taniguchi, Masaki; Kashiwagi, Mieko; Tobari, Hiroyuki; Umeda, Naotaka; Akino, Noboru; et al.

Fusion Engineering and Design, 86(6-8), p.835 - 838, 2011/10

 Times Cited Count:8 Percentile:58.2(Nuclear Science & Technology)

Neutral beam (NB) injectors for JT-60 Super Advanced (JT-60SA) have been designed and developed. Twelve positive-ion-based and one negative-ion-based NB injectors are allocated to inject 30 MW D$$^{0}$$ beams in total for 100 s. Each of the positive-ion-based NB injector is designed to inject 1.7 MW for 100s at 85 keV. A part of the power supplies and magnetic shield utilized on JT-60U are upgraded and reused on JT-60SA. To realize the negative-ion-based NB injector for JT-60SA where the injection of 500 keV, 10 MW D$$^{0}$$ beams for 100s is required, R&Ds of the negative ion source have been carried out. High-energy negative ion beams of 490-500 keV have been successfully produced at a beam current of 1-2.8 A through 20% of the total ion extraction area, by improving voltage holding capability of the ion source. This is the first demonstration of a high-current negative ion acceleration of $$>$$1 A to 500 keV. The design of the power supplies and the beamline is also in progress. The procurement of the acceleration power supply starts in 2010.

Journal Articles

Development of the JT-60SA Neutral Beam Injectors

Hanada, Masaya; Kojima, Atsushi; Inoue, Takashi; Watanabe, Kazuhiro; Taniguchi, Masaki; Kashiwagi, Mieko; Tobari, Hiroyuki; Umeda, Naotaka; Akino, Noboru; Kazawa, Minoru; et al.

AIP Conference Proceedings 1390, p.536 - 544, 2011/09

 Times Cited Count:5 Percentile:77.65

no abstracts in English

Journal Articles

Achievement of 500 keV negative ion beam acceleration on JT-60U negative-ion-based neutral beam injector

Kojima, Atsushi; Hanada, Masaya; Tanaka, Yutaka*; Kawai, Mikito*; Akino, Noboru; Kazawa, Minoru; Komata, Masao; Mogaki, Kazuhiko; Usui, Katsutomi; Sasaki, Shunichi; et al.

Nuclear Fusion, 51(8), p.083049_1 - 083049_8, 2011/08

 Times Cited Count:42 Percentile:88.1(Physics, Fluids & Plasmas)

Hydrogen negative ion beams of 490 keV, 3 A and 510 keV, 1 A have been successfully produced in the JT-60 negative ion source with three acceleration stages. These successful productions of the high-energy beams at high current have been achieved by overcoming the most critical issue, i.e., a poor voltage holding of the large negative ion sources with the grids of 2 m$$^{2}$$ for JT-60SA and ITER. To improve voltage holding capability, the breakdown voltages for the large grids was examined for the first time. It was found that a vacuum insulation distance for the large grids was 6-7 times longer than that for the small-area grid (0.02 m$$^{2}$$). From this result, the gap lengths between the grids were tuned in the JT-60 negative ion source. The modification of the ion source also realized a significant stabilization of voltage holding and a short conditioning time. These results suggest a practical use of the large negative ion sources in JT-60SA and ITER.

Journal Articles

Demonstration of 500 keV beam acceleration on JT-60 negative-ion-based neutral beam injector

Kojima, Atsushi; Hanada, Masaya; Tanaka, Yutaka*; Kawai, Mikito*; Akino, Noboru; Kazawa, Minoru; Komata, Masao; Mogaki, Kazuhiko; Usui, Katsutomi; Sasaki, Shunichi; et al.

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2011/03

Hydrogen negative ion beams of 490keV, 3A and 510 keV, 1A have been successfully produced in the JT-60 negative ion source with three acceleration stages. These successful productions of the high-energy beams at high current have been achieved by overcoming the most critical issue, i.e., a poor voltage holding of the large negative ion sources with the grids of $$sim$$ 2 m$$^{2}$$ for JT-60SA and ITER. To improve voltage holding capability, the breakdown voltages for the large grids was examined for the first time. It was found that a vacuum insulation distance for the large grids was 6-7 times longer than that for the small-area grid (0.02 m$$^{2}$$). From this result, the gap lengths between the grids were tuned in the JT-60 negative ion source. The modification of the ion source also realized a significant stabilization of voltage holding and a short conditioning time. These results suggest a practical use of the large negative ion sources in JT-60 SA and ITER.

Journal Articles

Development and design of the negative-ion-based NBI for JT-60 Super Advanced

Hanada, Masaya; Akino, Noboru; Endo, Yasuei; Inoue, Takashi; Kawai, Mikito; Kazawa, Minoru; Kikuchi, Katsumi; Komata, Masao; Kojima, Atsushi; Mogaki, Kazuhiko; et al.

Journal of Plasma and Fusion Research SERIES, Vol.9, p.208 - 213, 2010/08

A large negative ion source with an ion extraction area of 110 cm $$times$$ 45 cm has been developed to produce 500 keV, 22 A D$$^{-}$$ ion beams required for JT-60 Super Advanced. To realize the JT-60SA negative ion source, the JT-60 negative ion source has been modified and tested on the negative-ion-based neutral beam injector on JT-60U. A 500 keV H$$^{-}$$ ion beam has been produced at 3 A without a significant degradation of beam optics. This is the first demonstration of a high energy negative ion acceleration of more than one-ampere to 500 keV in the world. The beam current density of 90 A/m$$^{2}$$ is being increased to meet 130 A/m$$^{2}$$ of the design value for JT-60SA by tuning the operation parameters. A long pulse injection of 30 s has been achieved at a injection D$$^{0}$$ power of 3 MW. The injection energy, defined as the product of the injection time and power, reaches 80 MJ by neutralizing a 340 keV, 27 A D$$^{-}$$ ion beam produced with two negative ion sources.

Journal Articles

Recent R&D activities of negative-ion-based ion source for JT-60SA

Ikeda, Yoshitaka; Hanada, Masaya; Kamada, Masaki; Kobayashi, Kaoru; Umeda, Naotaka; Akino, Noboru; Ebisawa, Noboru; Inoue, Takashi; Honda, Atsushi; Kawai, Mikito; et al.

IEEE Transactions on Plasma Science, 36(4), p.1519 - 1529, 2008/08

 Times Cited Count:8 Percentile:34.65(Physics, Fluids & Plasmas)

The JT-60SA N-NBI system is required to inject 10 MW for 100 s at 500 keV. Three key issues should be solved for the JT-60SA N-NBI ion source. One is to improve the voltage holding capability. Recent R&D tests suggested that the accelerator with a large area of grids may need a high margin in the design of electric field and a long time for conditioning. The second issue is to reduce the grid power loading. It was found that some beamlets were strongly deflected due to beamlet-beamlet interaction and strike on the grounded grid. The grids are to be designed by taking account of beamlet-beamlet interaction in three-dimensional simulation. Third is to maintain the D- production for 100 s. A simple cooling structure is proposed for the active cooled plasma grid, where a key is the temperature gradient on the plasma grid for uniform D- production. The modified N-NBI ion source will start on JT-60SA in 2015.

Journal Articles

Clarification of strain limits considering the ratcheting fatigue strength of 316FR steel

Isobe, Nobuhiro*; Sukekawa, Masayuki*; Nakayama, Yasunari*; Date, Shingo*; Otani, Tomomi*; Takahashi, Yukio*; Kasahara, Naoto; Shibamoto, Hiroshi*; Nagashima, Hideaki*; Inoue, Kazuhiko*

Nuclear Engineering and Design, 238(2), p.347 - 352, 2008/02

 Times Cited Count:21 Percentile:81.14(Nuclear Science & Technology)

The effect of ratcheting on fatigue strength was investigated in order to rationalize the strain limit as a design criterion of commercialized fast reactor systems. Ratcheting fatigue tests were conducted at 550$$^{circ}$$C. Duration of the ratchet straining was set for a certain number of strain cycles taking the loading condition of fast reactors into account, and the number of cycles for strain accumulation was defined as the ratchet-expired cycle. Fatigue lives decrease as the accumulated strain by ratcheting increases. Fatigue life reduction was negligible when the maximum mean stress was less than 25 MPa, corresponding to an accumulated strain of 2.2 percent. Accumulated strain is limited to 2 percent in the present design guidelines and this strain limit is considered effective to avoid reducing fatigue life by ratcheting. Micro-crack growth behaviors were also investigated in these tests in order to discuss the life reduction mechanisms in ratcheting conditions.

Journal Articles

An Experimental validation of the guideline for inelastic design analysis through structural model tests

Watanabe, Daigo*; Chuman, Yasuharu*; Otani, Tomomi*; Shibamoto, Hiroshi*; Inoue, Kazuhiko*; Kasahara, Naoto

Nuclear Engineering and Design, 238(2), p.389 - 398, 2008/02

 Times Cited Count:5 Percentile:37.69(Nuclear Science & Technology)

In this paper, the inelastic analysis procedures for the improved design of future fast breeder reactors were validated through the structural model tests and the evaluation of the experimental results by the inelastic analyses. First, a thermal fatigue test of a 316FR hollow cylinder with two longitudinal weldments was conducted under the condition of combined constant axial load and cyclic movement of axial temperature distribution, which simulated the loading condition near the free surface of coolant sodium in the main vessel of fast breeder reactors (FBRs). Second, the inelastic analyses were carried out in accordance with the recommended procedure by using the measured results of oscillating temperature distribution. Finally, the results of inelastic analyses were compared with the experimental results and it was validated that the recommended practice gave a conservative result for the deformation and a good estimation of strain range for the fatigue life evaluation.

Journal Articles

Technical design of NBI system for JT-60SA

Ikeda, Yoshitaka; Akino, Noboru; Ebisawa, Noboru; Hanada, Masaya; Inoue, Takashi; Honda, Atsushi; Kamada, Masaki; Kawai, Mikito; Kazawa, Minoru; Kikuchi, Katsumi; et al.

Fusion Engineering and Design, 82(5-14), p.791 - 797, 2007/10

 Times Cited Count:19 Percentile:79.3(Nuclear Science & Technology)

Modification of JT-60U to a superconducting device (so called JT-60SA) has been planned to contribute to ITER and DEMO. The NBI system is required to inject 34 MW for 100 s. The upgraded NBI system consists of twelve positive ion based NBI (P-NBI) units and one negative ion based NBI (N-NBI) unit. The injection power of the P-NBI units are 2 MW each at 85 keV, and the N-NBI unit will be 10 MW at 500 keV, respectively. On JT-60U, the long pulse operation of 30 s at 2 MW (85 keV) and 20 s at 3.2 MW (320 keV) have been achieved on P-NBI and N-NBI units, respectively. Since the temperature increase of the cooling water in both ion sources is saturated within 20 s, further pulse extension up to 100 s is expected to mainly modify the power supply systems in addition to modification of the N-NBI ion source for high acceleration voltage. The detailed technical design of the NBI system for JT-60SA is presented.

Journal Articles

Introduction to plasma fusion energy

Takamura, Shuichi*; Kado, Shinichiro*; Fujii, Takashi*; Fujiyama, Hiroshi*; Takabe, Hideaki*; Adachi, Kazuo*; Morimiya, Osamu*; Fujimori, Naoji*; Watanabe, Takayuki*; Hayashi, Yasuaki*; et al.

Kara Zukai, Purazuma Enerugi No Subete, P. 164, 2007/03

no abstracts in English

Journal Articles

Present status of the negative ion based NBI system for long pulse operation on JT-60U

Ikeda, Yoshitaka; Umeda, Naotaka; Akino, Noboru; Ebisawa, Noboru; Grisham, L. R.*; Hanada, Masaya; Honda, Atsushi; Inoue, Takashi; Kawai, Mikito; Kazawa, Minoru; et al.

Nuclear Fusion, 46(6), p.S211 - S219, 2006/06

 Times Cited Count:52 Percentile:86.86(Physics, Fluids & Plasmas)

Recently, the extension of the pulse duration up to 30 sec has been intended to study quasi-steady state plasma on JT-60U N-NBI system. The most serious issue is to reduce the heat load on the grids for long pulse operation. Two modifications have been proposed to reduce the heat load. One is to suppress the beam spread which may be caused by beamlet-beamlet interaction in the multi-aperture grid due to the space charge force. Thin plates were attached on the extraction grid to modify the local electric field. The plate thickness was optimized to steer the beamlet deflection. The other is to reduce the stripping loss, where the electron of the negative ion beam is stripped and accelerated in the ion source and then collides with the grids. The ion source was modified to reduce the pressure in the accelerator column to suppress the beam-ion stripping loss. Up to now, long pulse injection of 17 sec for 1.6 MW and 25 sec for $$sim$$1 MW has been obtained by one ion source with these modifications.

Journal Articles

Development of elevated temperature structural design standard and three-dimensional seismic isolation technology for advanced nuclear power plant

Inoue, Kazuhiko*; Shibamoto, Hiroshi*; Takahashi, Kenji; Ikutama, Shinya*; Morishita, Masaki; Aoto, Kazumi; Kasahara, Naoto; Asayama, Tai; Kitamura, Seiji

Nihon Genshiryoku Gakkai-Shi, 48(5), p.333 - 338, 2006/05

no abstracts in English

Journal Articles

Beam deflection by plasma grid filter current in the negative-ion source for JT-60U neutral beam injection system

Umeda, Naotaka; Ikeda, Yoshitaka; Hanada, Masaya; Inoue, Takashi; Kawai, Mikito; Kazawa, Minoru; Komata, Masao; Mogaki, Kazuhiko; Oga, Tokumichi

Review of Scientific Instruments, 77(3), p.03A529_1 - 03A529_3, 2006/03

 Times Cited Count:5 Percentile:31.18(Instruments & Instrumentation)

no abstracts in English

Journal Articles

A Development of Three-Dimensional seismic isolation for advanced reactor systems in Japan, 2

Takahashi, Kenji*; Inoue, Kazuhiko; Kato, Asao*; Ito, Kei; Fujita, Takafumi*

Transactions of 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT-18), p.3371 - 3380, 2006/03

We carried out reflection seismic and multi-offset VSP surveys at JNC Shobasama-site to develop the investigation technique in the granite area, and evaluated the applicability of these geophysical methods. As the result of this study, we consider that (a) It is possible to infer the existence of the lower angle fracture zone in the granite by reflection seismic survey and (b) Multi-offset VSP supplements the result of reflection seismic survey and it is possible to infer the distribution of the fracture zone in deeper area in the granite.

Journal Articles

Measurement of thermal ratcheting strain on the structures by the laser speckle method

Watanabe, Daigo*; Chuman, Yasuharu*; Otani, Tomomi*; Shibamoto, Hiroshi; Inoue, Kazuhiko*; Kasahara, Naoto

Proceedings of 2006 ASME Pressure Vessels and Piping Division Conference (PVP 2006)/International Council on Pressure Vessel Technology (ICPVT-11) (CD-ROM), 7 Pages, 2006/00

Prevention of thermal ratcheting is an important problem for high temperature components of fast breeder reactors that are subjected to cyclic thermal loads. To clarify ratcheting behaviors, structural model tests were planned. Strain measurement is important for understanding the thermal ratcheting phenomenon, however the conventional measurement by strain gauge is difficult at high temperature. Then, Laser speckle strain measurement system using the dual-beam set-up was developed to apply to high temperature structural model tests. This system was applied to the thermal ratcheting tests, which demonstrated the actual operative conditions of reactor vessels. Through comparison with uniaxial test results obtained by extensometers, the laser speckle method was verified. Measured data of structural model tests were utilized to certify the guidelines of inelastic analysis for design, which provide prediction method of strain in components of fast reactor.

Journal Articles

Recent progress of negative ion based neutral beam injector for JT-60U

Umeda, Naotaka; Yamamoto, Takumi; Hanada, Masaya; Grisham, L. R.*; Kawai, Mikito; Oga, Tokumichi; Akino, Noboru; Inoue, Takashi; Kazawa, Minoru; Kikuchi, Katsumi*; et al.

Fusion Engineering and Design, 74(1-4), p.385 - 390, 2005/11

 Times Cited Count:9 Percentile:55.58(Nuclear Science & Technology)

In negative ion based neutral beam injector (N-NBI) for JT-60U, some modifications for extent pulse duration from 10 second, which is design value, to 30 second was conducted. Main limit to prevent pulse extension was heat loads onto grounded grid in an ion source and onto beam limiter placed at 22 m from the ion source. To reduce these heat loads, beam extraction area was optimized and the limiter was changed to one which had about twice thermal capacity. As a result of these modifications, the temperature rise of the water which was cooling grounded grid could be suppressed under 40 degree, which can operate in steady state condition. The temperature rise of the limiter could be restricted to 60%. Untill now the beam pulse extended to 17 second of 1.6MW power at 366keV energy, and injection of 30 seconds will be achieved in next experiment.

Journal Articles

Study on Three-Dimensional Seismic Isolation System Applied to Advanced Nuclear Power Plants, 5; Study on Development Planning

Takahashi, Kenji; Kato, Asao*; Ito, Kei; Fushimi, Minoru*; Fujita, Takafumi*; Inoue, Kazuhiko*

Dynamics and Design Conference 2005 (D&D 2005) Koen Rombunshu (CD-ROM), 6 Pages, 2005/09

In order to reduce the cost of plant design and construction, and to enhance the credibility, a study for Three-Dimensional isolation system was permormed. There are two types of isolation system. One is a 3D entire building isolaiton system. The other is a vertical isolation system which is added on the horizontal entire building isolation system. For both systems, outlines of development,requirements of the sytems, process of the verification tests, test results and applicabilities to the fast breeder reactor are mentioned.

Journal Articles

Application of Classification Method to obtain Primary Stresses without Evaluation Sections to Perforated Structures

Nagashima, Hedeaki; Shibamoto, Hiroshi; Inoue, Kazuhiko; kasahara, Naoto; Sadahiro, Daisuke*

Proceedings of 2005 ASME International Mechanical Engineering Congress and Exposition (CD-ROM), 0 Pages, 2005/08

Focusing on the cover layer materials (as the Radon Barrier Materials), which could have the effect to restrain the radon from scattering into the air and the effect of the radiation shielding, we produced the radon barrier materials with crude bentonite on an experimental basis, using the rotary type comprehensive unit for grinding and mixing, through which we carried out the evaluation of the characteristics thereof.

59 (Records 1-20 displayed on this page)