Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 345

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Report of ITPA TG Meetings, 52

Shinohara, Koji; Hayashi, Nobuhiko; Isayama, Akihiko; Miyato, Naoaki; Urano, Hajime; Aiba, Nobuyuki

Purazuma, Kaku Yugo Gakkai-Shi, 91(12), p.797 - 800, 2015/12

no abstracts in English

Journal Articles

Progress and status of the gyrotron development for the JT-60SA ECH/CD system

Kobayashi, Takayuki; Sawahata, Masayuki; Terakado, Masayuki; Hiranai, Shinichi; Ikeda, Ryosuke; Oda, Yasuhisa; Wada, Kenji; Hinata, Jun; Yokokura, Kenji; Hoshino, Katsumichi; et al.

Proceedings of 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2015) (USB Flash Drive), 3 Pages, 2015/08

A gyrotron for electron cyclotron heating and current drive (ECH/CD) has been developed for JT-60SA (Super-Advanced). In high-power, long-pulse operations, oscillations of 1 MW/100 s have been demonstrated at both 110 GHz and 138 GHz, for the first time. These results fully satisfied the requirements for JT-60SA. Moreover, it was experimentally shown that the higher power operation at each frequency is expected to be acceptable for this gyrotron from the viewpoint of heat load at the cavity resonator, collector, and stray radiation absorbers. An oscillation at 82 GHz, which is an additional frequency, has been demonstrated up to 2 s at the output power of 0.4 MW, so far. High power experiments toward higher power of 1.5 MW (110/138 GHz) and 1 MW (82 GHz) are ongoing.

Journal Articles

Report on ITPA (International Tokamak Physics Activity) meeting, 49

Shinohara, Koji; Isayama, Akihiko; Suzuki, Takahiro; Yoshida, Maiko

Purazuma, Kaku Yugo Gakkai-Shi, 91(7), p.494 - 496, 2015/07

AA2015-0141.pdf:0.38MB

no abstracts in English

Journal Articles

Gyrotron development for high-power, long-pulse electron cyclotron heating and current drive at two frequencies in JT-60SA and its extension toward operation at three frequencies

Kobayashi, Takayuki; Moriyama, Shinichi; Yokokura, Kenji; Sawahata, Masayuki; Terakado, Masayuki; Hiranai, Shinichi; Wada, Kenji; Sato, Yoshikatsu; Hinata, Jun; Hoshino, Katsumichi; et al.

Nuclear Fusion, 55(6), p.063008_1 - 063008_8, 2015/06

 Times Cited Count:25 Percentile:77.57(Physics, Fluids & Plasmas)

A gyrotron enabling high-power, long-pulse oscillations at both 110 GHz and 138 GHz has been developed for electron cyclotron heating (ECH) and current drive (CD) in JT-60SA. Oscillations of 1 MW for 100 s have been demonstrated at both frequencies, for the first time as a gyrotron operating at two frequencies. The optimization of the anode voltage, or the electron pitch factor, using a triode gun was a key to obtain high power and high efficiency at two frequencies. It was also confirmed that the internal losses in the gyrotron were sufficiently low for expected long pulse operation at the higher power level of $$sim$$1.5 MW. Another important result is that an oscillation at 82 GHz, which enables to use fundamental harmonic waves in JT-60SA while the other two frequencies are used as second harmonics waves, was demonstrated up to 0.4 MW for 2 s. These results of the gyrotron development significantly contribute to enhancing operation regime of the ECH/CD system in JT-60SA.

Journal Articles

One-dimensional analysis of ECRH-assisted plasma start-up in JT-60SA

Hada, Kazuyoshi*; Nagasaki, Kazunobu*; Masuda, Kai*; Kobayashi, Shinji*; Ide, Shunsuke; Isayama, Akihiko; Kajiwara, Ken

Fusion Science and Technology, 67(4), p.693 - 704, 2015/05

 Times Cited Count:10 Percentile:64.63(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Development of a dual frequency (110/138 GHz) gyrotron for JT-60SA and its extension to an oscillation at 82 GHz

Kobayashi, Takayuki; Moriyama, Shinichi; Isayama, Akihiko; Sawahata, Masayuki; Terakado, Masayuki; Hiranai, Shinichi; Wada, Kenji; Sato, Yoshikatsu; Hinata, Jun; Yokokura, Kenji; et al.

EPJ Web of Conferences, 87, p.04008_1 - 04008_5, 2015/03

 Times Cited Count:5 Percentile:83.62(Physics, Fluids & Plasmas)

A dual-frequency gyrotron, which can generate 110 GHz and 138 GHz waves independently, is being developed in JAEA to enable electron cyclotron heating (ECH) and current drive (ECCD) in a wider range of plasma discharge conditions of JT-60SA. Operation for the gyrotron conditioning and parameter optimization toward 1 MW for 100 s, which is the target output power and pulse length for JT-60SA, is in progress without problems. Oscillations of 1 MW for 10 s and 0.51 MW for 198 s were obtained, so far, at both frequencies. In addition, an oscillation (0.3 MW for 20 ms) at 82 GHz was demonstrated as an additional frequency of the dual-frequency gyrotron which shows a possibility of the use of fundamental harmonic wave in JT-60SA.

Journal Articles

Report on ITPA meetings, 47

Isayama, Akihiko; Urano, Hajime; Miyato, Naoaki; Ide, Shunsuke; Asakura, Nobuyuki; Shinohara, Koji

Purazuma, Kaku Yugo Gakkai-Shi, 90(12), p.830 - 833, 2014/12

no abstracts in English

Journal Articles

Inter-code comparison benchmark between DINA and TSC for ITER disruption modelling

Miyamoto, Seiji*; Isayama, Akihiko; Bandyopadhyay, I.*; Jardin, S. C.*; Khayrutdinov, R. R.*; Lukash, V.*; Kusama, Yoshinori; Sugihara, Masayoshi*

Nuclear Fusion, 54(8), p.083002_1 - 083002_19, 2014/08

 Times Cited Count:32 Percentile:82.75(Physics, Fluids & Plasmas)

Two well-established simulation codes, DINA and TSC, are compared with each other using benchmark scenarios in order to validate the ITER 2D disruption modelling by those codes. Although the simulation models employed in those two codes ought to be equivalent in the resistive time scale, it has long been unanswered whether the one of the two codes is really able to reproduce the other result correctly, since a large number of code-wise differences render the comparison task exceedingly complicated. In this paper, it is demonstrated that after simulations are set up accounting for the model differences, in general, a good agreement is attained on a notable level, corroborating the correctness of the code results. When the halo current generation and its poloidal path in the first wall are included, however, the situation is more complicated. Because of the surface averaged treatment of the magnetic field (current density) diffusion equation, DINA can only approximately handle the poloidal electric currents in the first wall that cross field lines. Validation is carried out for DINA simulations of halo current generation by comparing with TSC simulations, where the treatment of halo current dynamics is more justifiable. The particularity of each code is depicted and the consequence in ITER disruption prediction is discussed.

Journal Articles

Role of the electron temperature in the current decay during disruption in JT-60U

Shibata, Yoshihide; Isayama, Akihiko; Matsunaga, Go; Kawano, Yasunori; Miyamoto, Seiji*; Lukash, V.*; Khayrutdinov, R.*; JT-60 Team

Plasma and Fusion Research (Internet), 9(Sp.2), p.3402084_1 - 3402084_5, 2014/06

We performed the disruption simulation using DINA code to investigate the effect of the electron temperature $$T_{rm e}$$ on the plasma current decay after the initial phase of current quench (CQ). In this calculation, we used the measured $$T_{rm e}$$ profile during the initial phase of CQ. After the initial phase of CQ, we assumed that the $$T_{rm e}$$ profile does not change in time and used the value at the end of the initial phase of current quench because $$T_{rm e}$$ profile could not be measured after the initial phase of CQ. From the simulation results, it was found that the time evolution of plasma current calculated by DINA was similar to experimental one in this calculation. However, the time evolution of $$T_{rm e}$$profile in this calculation was different from the measured $$T_{rm e}$$ profile because Te after first mini-collapse rapidly decreased until the value below a measurement limit (less than 0.1 keV). Moreover, the time evolution of poloidal cross-section S calculated by DINA code was rapidly decreased although the experimental one was gradually decreased. The plasma current decay during the disruption is determined by various parameters, $$dL_{rm p}/dt$$, $$T_{rm e}$$ and S. It is necessary to evaluate the effect of $$T_{rm e}$$ profile on the plasma current decay after the initial phase of CQ by using various assumed $$T_{rm e}$$ model and DINA code.

Journal Articles

Report on ITPA meetings, 45

Hayashi, Nobuhiko; Aiba, Nobuyuki; Isayama, Akihiko; Shinohara, Koji; Honda, Mitsuru

Purazuma, Kaku Yugo Gakkai-Shi, 90(6), p.352 - 355, 2014/06

no abstracts in English

Journal Articles

The Effect of the electron temperature and current density profiles on the plasma current decay in JT-60U disruptions

Shibata, Yoshihide; Isayama, Akihiko; Miyamoto, Seiji*; Kawakami, Sho*; Watanabe, Kiyomasa*; Matsunaga, Go; Kawano, Yasunori; Lukash, V.*; Khayrutdinov, R.*; JT-60 Team

Plasma Physics and Controlled Fusion, 56(4), p.045008_1 - 045008_8, 2014/04

 Times Cited Count:3 Percentile:15.46(Physics, Fluids & Plasmas)

In JT-60U disruption, the plasma current decay during the initial phase of current quench has been calculated by a disruption simulation code (DINA) using the measured electron temperature $$T_{rm e}$$ profile. In the case of fast plasma current decay, $$T_{rm e}$$ has a peaked profile just after thermal quench and the $$T_{rm e}$$ profile doesn't change significantly during the initial phase of current quench. On the other hand, in the case of the slow plasma current decay, the $$T_{rm e}$$ profile is border just after the thermal quench, and the $$T_{rm e}$$ profile shrinks. The results of DINA simulation show that plasma internal inductance $$L_{rm i}$$ increases during the initial phase of current quench, while plasma external inductance $$L_{rm e}$$ does not change in time. The increase of $$L_{rm i}$$ is caused by current diffusion toward the core plasma due to the decrease of $$T_{rm e}$$ in intermediate and edge regions. It is suggested that an additional heating in the plasma periphery region has the effect of slowing down plasma current decay.

Journal Articles

Development of advanced inductive scenarios for ITER

Luce, T. C.*; Challis, C. D.*; Ide, Shunsuke; Joffrin, E.*; Kamada, Yutaka; Politzer, P. A.*; Schweinzer, J.*; Sips, A. C. C.*; Stober, J.*; Giruzzi, G.*; et al.

Nuclear Fusion, 54(1), p.013015_1 - 013015_15, 2013/12

 Times Cited Count:33 Percentile:83.58(Physics, Fluids & Plasmas)

Journal Articles

Report on ITPA (International Tokamak Physics Activity) meeting, 42

Yoshida, Maiko; Shinohara, Koji; Hayashi, Nobuhiko; Isayama, Akihiko; Kamiya, Kensaku

Purazuma, Kaku Yugo Gakkai-Shi, 89(12), p.887 - 889, 2013/12

ITPA (International Tokamak Physics Activity) meetings were held in Autumn 2013.

Journal Articles

Effect of resistivity profile on current decay time of initial phase of current quench in neon-gas-puff inducing disruptions of JT-60U

Kawakami, Sho*; Shibata, Yoshihide; Watanabe, Kiyomasa*; Ono, Noriyasu*; Isayama, Akihiko; Takizuka, Tomonori*; Kawano, Yasunori; Okamoto, Masaaki*

Physics of Plasmas, 20(11), p.112507_1 - 112507_6, 2013/11

 Times Cited Count:2 Percentile:8.92(Physics, Fluids & Plasmas)

According to an early work on the behavior of the plasma current decay in the JT-60U disruptive discharges caused by the radiative collapse with a massive neon-gas-puff, the increase of the internal inductance mainly determined the current decay time of plasma current during the initial phase of current quench. To investigate what determines the increase of the internal inductance, we focus attention on the relationship between the electron temperature (or the resistivity) profile and the time evolution of the current density profile, and carry out numerical calculations. As a result, we find the reason of the increase of the internal inductance: The current density profile at the start of the current quench is broader than an expected current density profile in the steady state, which is determined by the temperature (or resistivity) profile. The current density profile evolves into peaked one and the internal inductance is increasing.

Journal Articles

Development of a linear motion antenna for the JT-60SA ECRF system

Moriyama, Shinichi; Kobayashi, Takayuki; Isayama, Akihiko; Hoshino, Katsumichi; Suzuki, Sadaaki; Hiranai, Shinichi; Yokokura, Kenji; Sawahata, Masayuki; Terakado, Masayuki; Hinata, Jun; et al.

Fusion Engineering and Design, 88(6-8), p.935 - 939, 2013/10

 Times Cited Count:4 Percentile:32.48(Nuclear Science & Technology)

An antenna having a first mirror driven in the linear motion (LM) and a fixed second mirror was proposed for electron cyclotron range of frequency (ECRF) heating and current drive system, to minimize the risk of cooling-water-leakage. Basic mechanical feasibilities of the bellows covering the movable structures of the antenna were previously investigated using a mock-up. This time, a support structure of the shaft has been designed using a metallic sliding bearing with solid lubricant. The sliding bearing can support combination of linear and rotational motions while a ball bearing supports either linear or rotational motion. We have newly installed the sliding bearing into the mock-up. A vacuum pumping test has been carried out paying attention to the influence of the solid lubricant by mass analysis. To design the LM antenna for JT-60SA in detail, heating and current drive characteristics for typical experimental scenarios of JT-60SA has been investigated by calculation.

Journal Articles

Remote experiments in JT-60U

Isayama, Akihiko

Purazuma, Kaku Yugo Gakkai-Shi, 89(7), p.464 - 467, 2013/07

no abstracts in English

Journal Articles

ELM triggering by energetic particle driven mode in wall-stabilized high-$$beta$$ plasmas

Matsunaga, Go; Aiba, Nobuyuki; Shinohara, Koji; Asakura, Nobuyuki; Isayama, Akihiko; Oyama, Naoyuki; JT-60 Team

Nuclear Fusion, 53(7), p.073046_1 - 073046_9, 2013/06

 Times Cited Count:4 Percentile:17.69(Physics, Fluids & Plasmas)

Journal Articles

Turbulence analyses of improved electron energy confinement in H-mode plasmas with gyrokinetic calculations

Narita, Emi; Honda, Mitsuru; Hayashi, Nobuhiko; Takizuka, Tomonori*; Ide, Shunsuke; Itami, Kiyoshi; Isayama, Akihiko; Fukuda, Takeshi*

Plasma and Fusion Research (Internet), 8, p.1403082_1 - 1403082_8, 2013/06

Journal Articles

Report of International Tokamak Physics Activity meeting, 40

Isayama, Akihiko; Asakura, Nobuyuki; Hayashi, Nobuhiko; Shinohara, Koji; Honda, Mitsuru; Oyama, Naoyuki

Purazuma, Kaku Yugo Gakkai-Shi, 89(6), p.430 - 433, 2013/06

no abstracts in English

Journal Articles

Dual frequency ECRF system development for JT-60SA

Kobayashi, Takayuki; Isayama, Akihiko; Sawahata, Masayuki; Suzuki, Sadaaki; Terakado, Masayuki; Hiranai, Shinichi; Wada, Kenji; Sato, Yoshikatsu; Hinata, Jun; Yokokura, Kenji; et al.

Fusion Science and Technology, 63(1T), p.160 - 163, 2013/05

 Times Cited Count:7 Percentile:49.28(Nuclear Science & Technology)

A dual frequency electron cyclotron range of frequency system has been developed for JT-60SA, by which a second frequency (135 $$sim$$ 140 GHz) is generated in addition to the first frequency of 110 GHz. A development of a dual frequency gyrotron is a key to realize the dual frequency system. The second frequency was chosen to be 138 GHz from the above frequency range from the viewpoint of gyrotron design. In order to realize high-power ($$>$$ 1 MW) and long-pulse operation for both frequencies, we designed main components of the gyrotron (the diamond window, cavity resonator and quasi-optical mode converter). We found the optimum parameter set from the parameters of these components, which has discrete characteristics. It was confirmed that the output power higher than 1 MW is obtained for both frequencies as a result of numerical design. Based on the above design, a dual frequency gyrotron was newly fabricated. In the conditioning operation, an output power was obtained as we expected.

345 (Records 1-20 displayed on this page)