Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Nishida, Masayuki*; Harjo, S.; Kawasaki, Takuro; Yamashita, Takayuki*; Gong, W.
Quantum Beam Science (Internet), 7(1), p.8_1 - 8_15, 2023/03
Takubo, Yusaku*; Takayama, Yusuke; Idiart, A.*; Tanaka, Tatsuya*; Ishida, Keisuke*; Fujisaki, Kiyoshi*
Proceedings of 2022 International High Level Radioactive Waste Management Conference (IHLRWM 2022) (Internet), p.906 - 915, 2022/11
no abstracts in English
Iwamoto, Yosuke; Yoshida, Makoto*; Meigo, Shinichiro; Yonehara, Katsuya*; Ishida, Taku*; Nakano, Keita; Abe, Shinichiro; Iwamoto, Hiroki; Spina, T.*; Ammigan, K.*; et al.
JAEA-Conf 2021-001, p.138 - 143, 2022/03
To predict the operating lifetime of materials in high-energy radiation environments at proton accelerator facilities, Monte Carlo code are used to calculate the number of displacements per atom (dpa). However, there is no experimental data in the energy region above 30 GeV. In this presentation, we introduce our experimental plan for displacement cross sections with 120-GeV protons at Fermilab Test Beam Facility. Experiments will be performed for the US fiscal year 2022. We developed the sample assembly with four wire sample of Al, Cu, Nb and W with 250-m diameter and 4-cm length. The sample assembly will be maintained at around 4 K by using a cryocooler in a vacuum chamber. Then, changes in the electrical resistivity of samples will be obtained under 120-GeV proton irradiation. Recovery of the accumulated defects through isochronal annealing, which is related to the defect concentration in the sample, will also be measured after the cryogenic irradiation.
Okutsu, Kenichi*; Yamashita, Takuma*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.
Fusion Engineering and Design, 170, p.112712_1 - 112712_4, 2021/09
Times Cited Count:3 Percentile:51.72(Nuclear Science & Technology)A muonic molecule which consists of two hydrogen isotope nuclei (deuteron (d) or tritium (t)) and a muon decays immediately via nuclear fusion and the muon will be released as a recycling muon, and start to find another hydrogen isotope nucleus. The reaction cycle continues until the muon ends up its lifetime of 2.2 s. Since the muon does not participate in the nuclear reaction, the reaction is so called a muon catalyzed fusion (
CF). The recycling muon has a particular kinetic energy (KE) of the muon molecular orbital when the nuclear reaction occurs. Since the KE is based on the unified atom limit where distance between two nuclei is zero. A precise few-body calculation estimating KE distribution (KED) is also in progress, which could be compared with the experimental results. In the present work, we observed recycling muons after
CF reaction.
Yamashita, Takuma*; Okutsu, Kenichi*; Kino, Yasushi*; Nakashima, Ryota*; Miyashita, Konan*; Yasuda, Kazuhiro*; Okada, Shinji*; Sato, Motoyasu*; Oka, Toshitaka; Kawamura, Naritoshi*; et al.
Fusion Engineering and Design, 169, p.112580_1 - 112580_5, 2021/08
Times Cited Count:3 Percentile:51.72(Nuclear Science & Technology)A muon () having 207 times larger mass of electron and the same charge as the electron has been known to catalyze a nuclear fusion between deuteron (d) and triton (t). These two nuclei are bound by
and form a muonic hydrogen molecular ion, dt
. Due to the short inter-nuclear distance of dt
, the nuclear fusion, d +t
+ n + 17.6 MeV, occurs inside the molecule. This reaction is called muon catalyzed fusion (
CF). Recently, the interest on
CF is renewed from the viewpoint of applications, such as a source of high-resolution muon beam and mono-energetic neutron beam. In this work, we report a time evolution calculation of
CF in a two-layered hydrogen isotope target.
Nishida, Satoru*; Nishino, Soichiro*; Sekine, Masahiko*; Oka, Yuki*; Harjo, S.; Kawasaki, Takuro; Suzuki, Hiroshi; Morii, Yukio*; Ishii, Yoshinobu*
Materials Transactions, 62(5), p.667 - 674, 2021/05
Times Cited Count:2 Percentile:20.18(Materials Science, Multidisciplinary)Meigo, Shinichiro; Matsuda, Hiroki; Iwamoto, Yosuke; Yoshida, Makoto*; Hasegawa, Shoichi; Maekawa, Fujio; Iwamoto, Hiroki; Nakamoto, Tatsushi*; Ishida, Taku*; Makimura, Shunsuke*
JPS Conference Proceedings (Internet), 33, p.011050_1 - 011050_6, 2021/03
R&D of the beam window is crucial in the ADS, which serves as a partition between the accelerator and the target region. Although the displacement per atom (DPA) is used to evaluate the damage on the window, experimental data on the displacement cross section is scarce in the energy region above 20 MeV. We started to measure the displacement cross section for the protons in the energy region between 0.4 to 3 GeV. The displacement cross section can be derived by resistivity change divided by the proton flux and the resistivity change per Frankel pair on cryo-cooled sample to maintain damage. Experiments were conducted at the 3 GeV proton synchrotron at the J-PARC Center, and aluminum and copper was used as samples. As a result of comparison between the present experiment and the calculation of the NRT model, which is widely used for calculation of the displacement cross section, it was found that the calculation of the NRT model overestimated the experiment by about 3 times.
Matsuda, Hiroki; Meigo, Shinichiro; Iwamoto, Yosuke; Yoshida, Makoto*; Hasegawa, Shoichi; Maekawa, Fujio; Iwamoto, Hiroki; Nakamoto, Tatsushi*; Ishida, Taku*; Makimura, Shunsuke*
Journal of Nuclear Science and Technology, 57(10), p.1141 - 1151, 2020/10
Times Cited Count:7 Percentile:78.91(Nuclear Science & Technology)To estimate the structural damages of materials in accelerator facilities, displacement per atom (dpa) is widely employed as a damage index, calculated based on the displacement cross-section obtained using a calculation model. Although dpa is applied as standard, the experimental data of the displacement cross-section for a proton in the energy region above 20 MeV are scarce. Among the calculation models, difference of about factor 8 exist, so that the experimental data of the cross-section are crucial to validate the model. To obtain the displacement cross-section, we conducted experiments at J-PARC. The displacement cross-section of copper and iron was successfully obtained for a proton projectile with the kinetic energies, 0.4 - 3 GeV. The results were compared with those obtained using the widely utilized Norgertt-Robinson-Torrens (NRT) model and the athermal-recombination-corrected (arc) model based on molecular dynamics. It was found that the NRT model overestimates the present displacement cross-section by 3.5 times. The calculation results obtained using with the arc model based on the Nordlund parameter show remarkable agreement with the experimental data. It can be concluded that the arc model must be employed for the dpa calculation for the damage estimation of copper and iron.
Meigo, Shinichiro; Matsuda, Hiroki; Iwamoto, Yosuke; Yoshida, Makoto*; Hasegawa, Shoichi; Maekawa, Fujio; Iwamoto, Hiroki; Nakamoto, Tatsushi*; Ishida, Taku*; Makimura, Shunsuke*
EPJ Web of Conferences, 239, p.06006_1 - 06006_4, 2020/09
Times Cited Count:0 Percentile:0.1R&D of the beam window is crucial in the ADS, which serves as a partition between the accelerator and the target region. Although the displacement per atom (DPA) is used to evaluate the damage on the window, experimental data on the displacement cross section is scarce in the energy region above 20 MeV. We started to measure the displacement cross section for the protons in the energy region between 0.4 to 3 GeV. The displacement cross section can be derived by resistivity change divided by the proton flux and the resistivity change per Frankel pair on cryo-cooled sample to maintain damage. Experiments were conducted at the 3 GeV proton synchrotron at the J-PARC Center, and copper was used as samples. As a result of comparison between the present experiment and the calculation of the NRT model, which is widely used for calculation of the displacement cross section, it was found that the calculation of the NRT model overestimated the experiment by about 3 times.
Sekine, Megumi; Matsuki, Takuya; Suzuki, Satoshi*; Tsutagi, Koichi; Nishida, Naoki; Kitao, Takahiko; Tomikawa, Hirofumi; Nakamura, Hironobu; LaFleur, A.*; Browne, M.*
JAEA-Technology 2019-023, 160 Pages, 2020/03
The International Atomic Energy Agency (IAEA) has proposed in its Research and Development plan (STR-385), the development of technology to enable real-time flow measurement of nuclear material as a part of an advanced approach to effective and efficient safeguards for reprocessing facilities. To address this, Japan Atomic Energy Agency (JAEA) has been tackling development of a new detector to enable monitoring of Pu in solutions with numerous FPs as a joint research program with U.S. DOE to cover whole reprocessing process. In this study, High Active Liquid Waste (HALW) Storage Facility in Tokai Reprocessing Plant was used as the test field. At first, the design information of HALW storage tank and radiation (type and intensity) were investigated to develop a Monte Carlo N-Particle Transport Code (MCNP) model. And then, dose rate distribution outside/ inside of the concrete cell where the HALW tank is located was measured to design new detectors and check MCNP model applicability. Using the newly designed detectors, gamma rays and neutron were continuously measured at the outside/ inside of the concrete cell to assess the radiation characteristics and to optimize detector position. Finally, the applicability for Pu monitoring technology was evaluated based on the simulation results and gamma-ray/neutron measurement results. We have found that there is possibility to monitor the change of Pu amount in solution by combination both of gamma-ray and neutron measurement. The results of this study suggested the applicability and capability of the Pu motoring to enhance safeguards for entire reprocessing facility which handles Pu with FP as a feasibility study. This is final report of this project.
Meigo, Shinichiro; Matsuda, Hiroki; Iwamoto, Yosuke; Yoshida, Makoto*; Hasegawa, Shoichi; Maekawa, Fujio; Iwamoto, Hiroki; Nakamoto, Tatsushi*; Ishida, Taku*; Makimura, Shunsuke*
JPS Conference Proceedings (Internet), 28, p.061004_1 - 061004_6, 2020/02
no abstracts in English
Strasser, P.*; Abe, Mitsushi*; Aoki, Masaharu*; Choi, S.*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; et al.
EPJ Web of Conferences, 198, p.00003_1 - 00003_8, 2019/01
Times Cited Count:13 Percentile:99.33Watanabe, Kenta*; Terashima, Daiki*; Nozaki, Mikito*; Yamada, Takahiro*; Nakazawa, Satoshi*; Ishida, Masahiro*; Anda, Yoshiharu*; Ueda, Tetsuzo*; Yoshigoe, Akitaka; Hosoi, Takuji*; et al.
Japanese Journal of Applied Physics, 57(6S3), p.06KA03_1 - 06KA03_6, 2018/06
Times Cited Count:10 Percentile:47.69(Physics, Applied)The advantage of SiO/AlON stacked gate dielectrics over SiO
, AlON and Al
O
single dielectric layers was demonstrated. Our systematic research revealed that the optimized stacked structure with 3.3-nm-thick AlON interlayer is beneficial in terms of superior interface quality, reduced gate leakage current and C-V hysteresis for next-generation high frequency and high power AlGaN/GaN MOS-HFETs.
Meigo, Shinichiro; Matsuda, Hiroki; Iwamoto, Yosuke; Iwamoto, Hiroki; Hasegawa, Shoichi; Maekawa, Fujio; Yoshida, Makoto*; Ishida, Taku*; Makimura, Shunsuke*; Nakamoto, Tatsushi*
Proceedings of 9th International Particle Accelerator Conference (IPAC '18) (Internet), p.499 - 501, 2018/06
no abstracts in English
Lee, C. H.*; Nishida, Atsuhiro*; Hasegawa, Takumi*; Nishiate, Hirotaka*; Kunioka, Haruno*; Kawamura, Seiko; Nakamura, Mitsutaka; Nakajima, Kenji; Mizuguchi, Yoshikazu*
Applied Physics Letters, 112(2), p.023903_1 - 023903_4, 2018/01
Times Cited Count:27 Percentile:78.36(Physics, Applied)Low energy phonons in LaOBiSSe
are studied using inelastic neutron scattering. Dispersionless flat phonon branches that are mainly associated with a large vibration of Bi atoms are observed at a relatively low energy of
= 6 - 6.7 meV. The phonon energy softens upon Se doping owing to its heavier atomic mass than S atom and the expansion of lattice constant. Simultaneously, the lattice thermal conductivity lowered upon Se doping as the same manner of the phonon softening. These suggest that despite the lack of an oversized cage in LaOBiS
Se
, rattling motions of Bi atoms can scatter phonon like rattling in cage compounds, contributing to enhance the thermoelectric property.
Ochi, Kotaro; Sasaki, Miyuki; Ishida, Mutsushi*; Hamamoto, Shoichiro*; Nishimura, Taku*; Sanada, Yukihisa
International Journal of Environmental Research and Public Health, 14(8), p.926_1 - 926_14, 2017/08
Times Cited Count:4 Percentile:23.69(Environmental Sciences)After the Fukushima Daiichi Nuclear Power Plant accident, the vertical distribution of radiocesium in soil has been investigated to better understand the behavior of radiocesium in the environment. The typical method used for measuring the vertical distribution of radiocesium is troublesome because it requires collection and measurement of the activity of soil samples. In this study, we established a method of estimating the vertical distribution of radiocesium by focusing on the characteristics of -ray spectra obtained via aerial radiation monitoring using an unmanned helicopter. In this method, the change in the ratio of direct
rays to scattered
rays at various depths in the soil was utilized to quantify the vertical distribution of radiocesium. The results show a positive correlation between the abovementioned and the actual vertical distributions of radiocesium measured in the soil samples.
Watanabe, Kenta*; Nozaki, Mikito*; Yamada, Takahiro*; Nakazawa, Satoshi*; Anda, Yoshiharu*; Ishida, Masahiro*; Ueda, Tetsuzo*; Yoshigoe, Akitaka; Hosoi, Takuji*; Shimura, Takayoshi*; et al.
Applied Physics Letters, 111(4), p.042102_1 - 042102_5, 2017/07
Times Cited Count:15 Percentile:61.76(Physics, Applied)AlGaN/GaN HFET (hetero-junction field-effect transitor) has gained much attention as next-generation high frequency and high power devices. In this study, we systematically investigated the interface reaction between Al-based dielectrics (AlO
and AlON) and AlGaN layer during deposition and post-deposition annealing (PDA), and revealed high thermal stability of AlON/AlGaN interface.
Mukai, Yoichi*; Nishida, Akemi; Hamamoto, Takuji*; Sakino, Yoshihiro*; Ikawa, Nozomu*; Takeuchi, Yoshitaka*; Chiba, Fumihiko*; Hori, Yoshiro*
Proceedings of 12th International Conference on Shock and Impact Loads on Structures (SI 2017) (USB Flash Drive), p.329 - 338, 2017/06
AIJ guideline against accidental actions is published as a book, "Introduction to shock-resistant design of buildings". This contains respect to objective and scope, design loads, member design, design criteria, non-structural element, progressive collapse and design examples. The objective of AIJ guideline is to minimize human and property damage in building structures against accidental actions based on the performance-based design. Target buildings for design are offices, apartments, hotels, hospitals, schools and public buildings. Structural systems of the buildings are limited to reinforced concrete and steel frame structures. In this paper, the overview of the AIJ guideline is introduced.
Ikawa, Nozomu*; Mukai, Yoichi*; Nishida, Akemi; Hamamoto, Takuji*; Kano, Toshiya*; Ota, Toshiro*; Nakamura, Naohiro*; Komuro, Masato*; Takeuchi, Masato*
Proceedings of 12th International Conference on Shock and Impact Loads on Structures (SI 2017) (USB Flash Drive), p.259 - 268, 2017/06
Accidental actions on building structures involve impact and explosion loads. The design loads due to impact are determined by experiment data, impact simulation and energetics approach. These loads are presented in the form of load-time (F-t) curves caused by collision and explosion. It is assumed that the structure is rigid and immovable and that impacting body absorbs all the energy (i.e., hard impact condition is supposed), because this assumption gives conservative results in general. Responses of individual structural members directly-subjected to an impulsive load are evaluated. These responses are classified into three types; impulsive response, dynamic response, and quasi-static response. The maximum responses are basically estimated by direct integration method with a single-degree-of-freedom (SDOF) model. The procedure of the SDOF modelling based on the classification of types of members and failure modes is proposed in AIJ guideline.
Nishida, Akemi; Mukai, Yoichi*; Hamamoto, Takuji*; Kushibe, Atsumichi*; Komuro, Masato*; Ohashi, Yasuhiro*; Obi, Hirotoshi*; Tsubota, Haruji
Proceedings of 12th International Conference on Shock and Impact Loads on Structures (SI 2017) (USB Flash Drive), p.379 - 388, 2017/06
Some design examples are presented to evaluate the shock-resistant performance of target buildings to confirm the applicability of the design criteria of AIJ guideline. Dynamic analyses are performed using SDOF model of an individual member on which an impulsive load is acting. Furthermore, analyses are performed using finite element model for the same member, and the results are compared to the results of the corresponding SDOF model for validation. Frame building structure model which is supposed to be located at the corner of a crossroad is investigated as an example. Dynamic responses and the corresponding damage states are illustrated for this building subjected to shock loads due to road vehicle crashes. As a non-structure member case, examples of window glass destruction subjected to internal and external gas explosions are presented.