Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Futemma, Akira; Sanada, Yukihisa; Nakama, Shigeo; Sasaki, Miyuki; Ochi, Kotaro; Sawahata, Yoshiro*; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; Haginoya, Masashi*; et al.
JAEA-Technology 2024-022, 170 Pages, 2025/03
On March 11, 2011, the 2011 off the Pacific coast of Tohoku Earthquake caused a tsunami that led to the Fukushima Daiichi Nuclear Power Station accident, releasing radioactive material into the environment. Since then, Aerial Radiation Monitoring (ARM) using manned helicopters has been employed to measure radiation distribution. As a commissioned project from the Nuclear Regulation Authority, the Japan Atomic Energy Agency (JAEA) utilizes this technology for emergency monitoring during nuclear facility accidents, aiming to provide prompt results by pre-arranging information on background radiation, topography, and control airspaces around nuclear power plants nationwide. In fiscal year 2023, the commissioned project included conducting ARM around the Sendai Nuclear Power Station and preparing related information. To enhance effectiveness during emergencies, ARM and the first domestic training flight of Unmanned Aerial Vehicles (UAVs) were conducted during the FY2023 Nuclear Energy Disaster Prevention Drill. Furthermore, UAVs radiation monitoring technology was advanced by selecting UAVs and investigating their performance. This report summarizes the results and technical issues identified providing insights to improve emergency preparedness.
Futemma, Akira; Sanada, Yukihisa; Nakama, Shigeo; Sasaki, Miyuki; Ochi, Kotaro; Nagakubo, Azusa; Sawahata, Yoshiro*; Kawasaki, Yoshiharu*; Iwai, Takeyuki*; Hiraga, Shogo*; et al.
JAEA-Technology 2024-021, 232 Pages, 2025/03
The 2011 off the Pacific coast of Tohoku Earthquake on March 11, 2011, caused a tsunami that led to the TEPCO's Fukushima Daiichi Nuclear Power Station (FDNPS) accident, releasing a large amount of radioactive material into the surrounding environment. Since the accident, Aerial Radiation Monitoring (ARM) has been used to quickly and widely measure radiation distribution. As a commissioned project from the Nuclear Regulation Authority, the Japan Atomic Energy Agency (JAEA) has continuously conducted ARM around FDNPS using manned and unmanned helicopters. This report summarizes the monitoring results for fiscal year 2023, evaluates changes in dose rate from past results, and discusses the factors contributing to these changes. Additionally, an analysis considering terrain undulation was conducted to improve accuracy for converting ARM data into dose rate. Furthermore, a method to discriminate airborne radon progeny was applied for ARM results to evaluate its impact. Moreover, to perform wide-area monitoring more efficiently, we advanced the development of unmanned airplane monitoring technology.
Takito, Kiyotaka; Okuda, Yukihiko; Nishida, Akemi; Li, Y.
Journal of Pressure Vessel Technology, 146(6), p.061301_1 - 061301_12, 2024/12
Times Cited Count:0 Percentile:0.00(Engineering, Mechanical)Vu, TheDang*; Shishido, Hiroaki*; Aizawa, Kazuya; Oku, Takayuki; Oikawa, Kenichi; Harada, Masahide; Kojima, Kenji M*; Miyajima, Shigeyuki*; Soyama, Kazuhiko; Koyama, Tomio*; et al.
IEEJ Transactions on Electrical and Electronic Engineering, 19(11), p.1888 - 1894, 2024/11
Times Cited Count:0 Percentile:0.00(Engineering, Electrical & Electronic)Kang, Z.; Okuda, Yukihiko; Nishida, Akemi; Tsubota, Haruji; Ito, Masaharu; Li, Y.
Proceedings of 31st International Conference on Nuclear Engineering (ICONE31) (Internet), 9 Pages, 2024/11
Most studies conducted till now on local damage of reinforced concrete (RC) slab structures subjected to missile impact are about normal impact, while few research related to oblique impact can be found. The objective of this study is to carry out impact tests under different impact conditions including oblique impacts, to confirm the different impact behaviors of the RC slab structure, to develop an analysis method by investigating the test results and analytical conditions, and to validate the analysis method through comparison with the test results. This study focuses on the effect of the stiffness of the supports for oblique impact on the reaction forces of RC slab. Until now, static loading tests were conducted to confirm the stiffnesses of the supporting parts that supported the RC specimen during oblique impact tests. Based on the obtained load-displacement relationships, and so on, the stiffnesses of the supporting parts are estimated.
Takito, Kiyotaka; Okuda, Yukihiko; Nishida, Akemi; Li, Y.
Proceedings of ASME 2024 Pressure Vessels & Piping Conference (PVP 2024) (Internet), 9 Pages, 2024/07
In probabilistic risk assessment against earthquakes (seismic PRA), one of the important issues is the development of a realistic response analysis method for evaluating the fragility of equipment and piping systems subject to input ground motions exceeding design assumption. Particularly, piping systems have complex plant-specific three-dimensional geometries. The arrangement and rigidity of piping support structures have significant impact on the response characteristics of the entire piping system. Therefore, it is necessary to develop a seismic response analysis method for piping systems, including piping support structures. To this end, the authors have been working on the development of elasto-plastic analysis method for piping support structures in order to establish a realistic response analysis method for piping systems including piping support structures. In this study, parametric studies on important analytical parameters were conducted to understand the influence of the analytical parameters on the deformation in the elasto-plastic analysis of piping support structures. At first, a three-dimensional finite element analysis model was created for cyclic loading tests of a gate type piping support structure assuming large deformations. Using the model, parametric studies were conducted for analysis parameters such as yield stress, secondary stiffness and element size. As the result, the influences of the analysis parameters on the analysis results were quantitatively clarified, which provided insight into the methodology for setting appropriate analysis parameters on elasto-plastic analysis for piping support structures.
Vu, TheDang*; Shishido, Hiroaki*; Aizawa, Kazuya; Oku, Takayuki; Oikawa, Kenichi; Harada, Masahide; Kojima, Kenji M*; Miyajima, Shigeyuki*; Soyama, Kazuhiko; Koyama, Tomio*; et al.
Journal of Physics; Conference Series, 2776, p.012009_1 - 012009_9, 2024/06
Okuda, Yukihiko; Takito, Kiyotaka; Nishida, Akemi; Li, Y.
Mechanical Engineering Journal (Internet), 11(2), p.23-00405_1 - 23-00405_12, 2024/04
After the Great East Japan earthquake and the accident at the TEPCO's Fukushima Daiichi Nuclear Power Stations in March 2011, the regulation for nuclear power plants (NPPs) has been enhanced to take countermeasures against beyond-design-basis events. To improve the seismic safety of nuclear facilities against earthquakes that exceed the design input ground motion, the importance of seismic probabilistic risk assessment (PRA) has drawn much attention. It is essential to evaluate the realistic seismic response of the equipment and piping in NPPs for fragility assessment in seismic PRA. In particular, since piping systems have plant-specific complex route geometries, it is known that the arrangement and stiffness of piping support structures have a significant impact on seismic response characteristics of the entire piping system. To construct a realistic seismic response analysis method for excessive input ground motion exceeding the elastic response, it is desired to develop an elastic-plastic response analysis method that can estimate the realistic response of piping systems including pipe support structures. In this study, the applicability of the method is confirmed by the simulation analysis of the elasto-plastic response for the piping support structure loading test previously reported. Moreover, based on the good correlation between the ductility factor and the damage status obtained from the test results and simulation analysis results, it is shown that the ductility factor is effective as a damage evaluation index for piping support structures.
Kang, Z.; Okuda, Yukihiko; Nishida, Akemi; Tsubota, Haruji; Li, Y.
Transactions of the 27th International Conference on Structural Mechanics in Reactor Technology (SMiRT 27) (Internet), 10 Pages, 2024/03
Most studies conducted till now on local damage of reinforced concrete (RC) slab structures subjected to projectile impact are about normal impact, while few research related to oblique impact can be found. The objective of this study is to carry out impact tests under different impact conditions including oblique impacts, to confirm the different impact behaviors of the RC slab structure, to develop an analysis method by investigating the test results and analytical conditions, and to validate the analysis method through comparison with the test results. This study focuses on the scabbing damage which is one of the local damage modes of RC slab. Based on oblique impact test results due to soft projectile with hemispherical nose shape, we investigate the relationship between the criterion related to the concrete fracture and the occurrence of scabbing damage.
Okuda, Yukihiko; Kang, Z.; Nishida, Akemi; Tsubota, Haruji; Li, Y.
Transactions of the 27th International Conference on Structural Mechanics in Reactor Technology (SMiRT 27) (Internet), 10 Pages, 2024/03
The outer walls of nuclear facility buildings consist of reinforced concrete (RC) panels. When a projectile collides with a nuclear facility building, local damages such as penetration, scabbing, and perforation can occur in the RC panels. Numerical simulation using finite element analysis (FEA) is generally employed to assess these damage conditions. However, the impact analysis by FEA modelled with continuum elements is difficult to address phenomena such as scattering fragments of concrete because the elements deletion method for large deformation is used to prevent interruption of numerical calculations. Recently, a numerical method known as Smooth Particles Hydrodynamics (SPH), one of the particle methods, has been employed to address discontinuous phenomena. In this paper, we focus on the scabbing damages to RC panels and report on the findings obtained through the validation of the numerical analysis using the SPH method.
Ishida, Takekazu*; Vu, TheDang*; Shishido, Hiroaki*; Aizawa, Kazuya; Oku, Takayuki; Oikawa, Kenichi; Harada, Masahide; Kojima, Kenji M*; Miyajima, Shigeyuki*; Koyama, Tomio*; et al.
Journal of Low Temperature Physics, 214(3-4), p.152 - 157, 2024/02
Times Cited Count:0 Percentile:0.00(Physics, Applied)Tsuru, Tomohito; Han, S.*; Matsuura, Shutaro*; Chen, Z.*; Kishida, Kyosuke*; Lobzenko, I.; Rao, S.*; Woodward, C.*; George, E.*; Inui, Haruyuki*
Nature Communications (Internet), 15, p.1706_1 - 1706_10, 2024/02
Times Cited Count:16 Percentile:98.27(Multidisciplinary Sciences)Refractory high-entropy alloys (RHEAs) have attracted attention because of their potential for use in ultrahigh-temperature applications. Unfortunately, their body-centered-cubic (BCC) crystal structures make them more brittle than the ductile and fracture-resistant face-centered-cubic (FCC) HEAs. RHEAs also display significantly lower creep strengths than a leading Ni-base superalloy and its FCC matrix. To overcome these drawbacks and develop RHEAs into viable structural materials, improved fundamental understanding is needed of factors that control strength and ductility. Here we investigate two model RHEAs, TiZrHfNbTa and VNbMoTaW, and show that the former is plastically compressible down to 77 K, whereas the latter is not below 298 K. We find that hexagonal close-packed (HCP) elements in TiZrHfNbTa lower its dislocation core energy, increase its lattice distortion, and lower its shear modulus relative to VNbMoTaW whose elements are all BCC, leading to the formers higher ductility and modulus-normalized yield strength. Consistent with our yield strength models, primarily screw dislocations are present in TiZrHfNbTa after deformation, but equal numbers of edge and screw segments in VNbTaMoW. Dislocation cores are compact in VNbTaMoW and extended in TiZrHfNbTa, and different macroscopic slip planes are activated in the two RHEAs, which we attribute to the concentration of HCP elements. Our findings demonstrate how electronic structure changes related to the ratio of HCP to BCC elements can be used to control strength, ductility, and slip behavior to develop the next generation of high-temperature materials for more efficient power plants and transportation.
Otsuki, Daiki*; Ishida, Tatsuhiro*; Tsutsumi, Naoya*; Kobayashi, Masaki*; Inagaki, Kodai*; Yoshida, Teppei*; Takeda, Yukiharu; Fujimori, Shinichi; Yasui, Akira*; Kitagawa, Saiki*; et al.
Physical Review Materials (Internet), 7(12), p.124601_1 - 124601_6, 2023/12
Times Cited Count:2 Percentile:13.64(Materials Science, Multidisciplinary)Shishido, Hiroaki*; Vu, TheDang*; Aizawa, Kazuya; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Soyama, Kazuhiko; Miyajima, Shigeyuki*; et al.
Journal of Applied Crystallography, 56(4), p.1108 - 1113, 2023/08
Times Cited Count:2 Percentile:50.03(Chemistry, Multidisciplinary)Iwasawa, Hideaki*; Sumida, Kazuki; Ishida, Shigeyuki*; Le Fvre, P.*; Bertran, F.*; Yoshida, Yoshiyuki*; Eisaki, Hiroshi*; Santander-Syro, A.*; Okuda, Taichi*
Scientific Reports (Internet), 13, p.13451_1 - 13451_7, 2023/08
Times Cited Count:2 Percentile:27.27(Multidisciplinary Sciences)Takito, Kiyotaka; Okuda, Yukihiko; Nishida, Akemi; Li, Y.
Proceedings of ASME 2023 Pressure Vessels and Piping Conference (PVP 2023) (Internet), 10 Pages, 2023/07
In probabilistic risk assessment against earthquakes (seismic PRA) for nuclear power plants, the development of a realistic response analysis method for the fragility assessment of piping systems considering input seismic motions exceeding design assumptions is one of the important issues. Usually, piping systems exhibit complex three-dimensional shapes. The arrangement and stiffness of the piping support structures significantly affect the response characteristics of the entire piping system. Therefore, it is necessary to develop a realistic response analysis method of piping systems including piping support structures. In this study, a method for modeling the elasto-plastic hysteresis characteristics of piping support structures is developed to establish a seismic response analysis method of piping systems including piping support structures. First, we formulate an elatsto-plastic spring model that can express the elasto-plastic hysteresis characteristics of a piping support structure. Subsequently, we perform a simulation analysis for the loading test of a piping support structure using this model. As the analysis results and test results were in good agreement, we confirmed the effectiveness of the formulation of the model. The main contents, such as the formulation of the elasto-plastic spring model, the simulation analysis of the loading test, and the comparison between the analysis results and the test results, and the results of this study are reported in this paper.
Yamamoto, Masahiko; Nishida, Naoki; Kobayashi, Daisuke; Nemoto, Ryo*; Hayashi, Hiroyuki*; Kitao, Takahiko; Kuno, Takehiko
JAEA-Technology 2023-004, 30 Pages, 2023/06
Glove-box gloves, that are used for handling nuclear fuel materials at the Tokai Reprocessing Plant (TRP) of the Japan Atomic Energy Agency, have an expiration date by internal rules. All gloves are replaced at a maximum of every 4-year. However, degrees of glove deterioration varies depending on its usage environment such as frequency, chemicals, and radiation dose. Therefore, physical properties such as tensile strength, elongation, hardness of gloves are measured and technical evaluation method for the glove life-time is established. It was found that gloves without any defects in its appearance have enough physical properties and satisfies the acceptance criteria values of new gloves. Thus, it was considered that the expired gloves could be used for total of 8-year, by adding 4-year of new glove life-time. In addition, the results of extrapolation by plotting the glove's physical properties versus the used years showed that the physical properties at 8-year is on the safer side than the reported physical properties of broken glove. Also, the data are not significantly different from the physical properties of the long-term storage glove (8 and 23 years). Based on these results, life-time of gloves at TRP is set to be 8-year. The frequency of glove inspections are not changed, and if any defects is found, the glove is promptly replaced. Thus, the risk related to glove usage is not increased. The cost of purchasing gloves, labor for glove replacement, and the amount of generated waste can be reduced by approximately 40%, respectively, resulting in more efficient and rationalized glove management.
Okuda, Yukihiko; Kang, Z.; Nishida, Akemi; Tsubota, Haruji; Li, Y.
Mechanical Engineering Journal (Internet), 10(3), p.22-00370_1 - 22-00370_12, 2023/06
Many experimental studies have been reported on the impact resistance of reinforced concrete (RC) structures. However, most formulas were derived from impact tests based on normal impact to target structures using rigid projectiles that do not deform during impact. Therefore, this study develops a local damage evaluation method considering the rigidity of projectiles and oblique impacts that should be considered in realistic projectile impact phenomena. Specifically, we focused on scabbing, defined as the peeling off the back face of the target opposite the impact face, and conducted impact tests on RC panels to clarify the scabbing limit by changing the impact velocity in an oblique impact. The effects of the projectile rigidity and oblique impact on the scabbing limit were investigated based on the test results. This work presents the test conditions, equipment, results, and the scabbing limit on the local damage to RC panels subjected to oblique impacts.
Kang, Z.; Okuda, Yukihiko; Nishida, Akemi; Tsubota, Haruji; Li, Y.
Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 9 Pages, 2023/05
Most studies conducted till now on local damage of reinforced concrete (RC) slab structures subjected to projectile impact are about normal impact, while few research related to oblique impact can be found. The objective of this study is to carry out impact tests under different impact conditions including oblique impacts, to confirm the different impact behaviors of the RC slab structure, to develop an analysis method by investigating the test results and analytical conditions, and to validate the analysis method through comparison with the test results. This study focuses on the scabbing damage which is one of the local damage modes of RC slab. Based on oblique impact test results due to soft projectile with hemispherical nose shape, we investigate the relationship between the criterion related to the concrete fracture and the occurrence of scabbing damage.
Okuda, Yukihiko; Takito, Kiyotaka; Nishida, Akemi; Li, Y.
Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 9 Pages, 2023/05
After the Great East Japan earthquake and the accident at the TEPCO's Fukushima Daiichi Nuclear Power Stations in March 2011, the regulation for nuclear power plants (NPPs) has been enhanced to take countermeasures against beyond-design-basis events. To improve the seismic safety of nuclear facilities against earthquakes that exceed the design input ground motion, the importance of seismic probabilistic risk assessment (PRA) has drawn much attention. It is essential to evaluate the realistic seismic response of the equipment and piping in NPPs for fragility assessment in seismic PRA. In particular, since piping systems have plant-specific complex route geometries, it is known that the arrangement and stiffness of piping support structures have a significant impact on seismic response characteristics of the entire piping system. In contrast, the current seismic design procedure adopts an evaluation method assuming an elastic response. To construct a realistic seismic response analysis method for excessive input ground motion exceeding the elastic response, it is desired to develop an elastic-plastic response analysis method that can estimate the realistic response of piping systems including pipe support structures. In this study, the applicability of the method is confirmed by the simulation analysis of the elasto-plastic response for the piping support structure loading test previously reported. Moreover, based on the good correlation between the ductility factor and the damage status obtained from the test results and simulation analysis results, it is shown that the ductility factor is effective as a damage evaluation index for piping support structures.