Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 71

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Uranium chelating ability of decorporation agents in serum evaluated by X-ray absorption spectroscopy

Uehara, Akihiro*; Matsumura, Daiju; Tsuji, Takuya; Yakumaru, Haruko*; Tanaka, Izumi*; Shiro, Ayumi*; Saito, Hiroyuki*; Ishihara, Hiroshi*; Homma-Takeda, Shino*

Analytical Methods, 14(24), p.2439 - 2445, 2022/06

 Times Cited Count:3 Percentile:60.41(Chemistry, Analytical)

Journal Articles

Fundamental study for decorporation of plutonium by chelating agents; Coordination analyses of simulated plutonium with chelating agents by X-ray absorption spectroscopy

Uehara, Akihiro*; Shuhui, X.*; Sato, Ryotaro*; Matsumura, Daiju; Tsuji, Takuya; Yakumaru, Haruko*; Shiro, Ayumi*; Saito, Hiroyuki*; Tanaka, Izumi*; Ishihara, Hiroshi*; et al.

Advances in X-Ray Chemical Analysis, Japan, 53, p.223 - 229, 2022/03

no abstracts in English

Journal Articles

Thermally altered subsurface material of asteroid (162173) Ryugu

Kitazato, Kohei*; Milliken, R. E.*; Iwata, Takahiro*; Abe, Masanao*; Otake, Makiko*; Matsuura, Shuji*; Takagi, Yasuhiko*; Nakamura, Tomoki*; Hiroi, Takahiro*; Matsuoka, Moe*; et al.

Nature Astronomy (Internet), 5(3), p.246 - 250, 2021/03

 Times Cited Count:43 Percentile:96.93(Astronomy & Astrophysics)

Here we report observations of Ryugu's subsurface material by the Near-Infrared Spectrometer (NIRS3) on the Hayabusa2 spacecraft. Reflectance spectra of excavated material exhibit a hydroxyl (OH) absorption feature that is slightly stronger and peak-shifted compared with that observed for the surface, indicating that space weathering and/or radiative heating have caused subtle spectral changes in the uppermost surface. However, the strength and shape of the OH feature still suggests that the subsurface material experienced heating above 300 $$^{circ}$$C, similar to the surface. In contrast, thermophysical modeling indicates that radiative heating does not increase the temperature above 200 $$^{circ}$$C at the estimated excavation depth of 1 m, even if the semimajor axis is reduced to 0.344 au. This supports the hypothesis that primary thermal alteration occurred due to radiogenic and/or impact heating on Ryugu's parent body.

Journal Articles

Comparative study of plutonium and minor actinide transmutation scenario

Nishihara, Kenji; Iwamura, Takamichi*; Akie, Hiroshi; Nakano, Yoshihiro; Van Rooijen, W.*; Shimazu, Yoichiro*

Proceedings of 21st International Conference & Exhibition; Nuclear Fuel Cycle for a Low-Carbon Future (GLOBAL 2015) (USB Flash Drive), p.388 - 395, 2015/09

The present study focuses on transmutation of Pu and minor actinide in Japanese case without utilizing Pu as resource. Pu can be transmuted by two groups of technology: conventional ones without reprocessing of spent fuel from transmuter and advanced ones with reprocessing. Necessary number of transmuters, inventory reduction of actinide and impact on repository are revealed by nuclear material balance analysis. As a whole advanced technology performs better in transmutation efficiency, although required number of transmuters is larger.

Journal Articles

Utilization of rock-like oxide fuel in the phase-out scenario

Nishihara, Kenji; Akie, Hiroshi; Shirasu, Noriko; Iwamura, Takamichi*

Journal of Nuclear Science and Technology, 51(2), p.150 - 165, 2014/02

 Times Cited Count:4 Percentile:30.92(Nuclear Science & Technology)

Utilization of rock-like oxide (ROX) fuel in light water reactors for plutonium (Pu) burning was studied by material balance analysis for a case of Japanese phase-out scenario under investigation after the Fukushima accident. For the analysis, the nuclear material balance analysis (NMB) code was developed with features of accurate burn-up calculation, flexible combination of reactors and fuels and an ability to estimate waste and repository. Three scenario-groups of once-through, Pu burning in mixed oxide (MOX) fuel and in ROX fuel were analyzed. By construction of two full MOX- or ROX- reactors, Pu amount is reduced to about a half and isotopic vector of Pu is deteriorated as nuclear weapon especially in terms of spontaneous fission neutron. Effects by ROX are more significant than MOX in both amount and vector. Repository footprint and potential radio-toxicity is not reduced by MOX and ROX because heat and toxicity of MOX and ROX spent fuel is considerably high.

Journal Articles

Optimization study on accelerator driven system design for effective transmutation of iodine-129

Ismailov, K.*; Nishihara, Kenji; Saito, Masaki*; Sagara, Hiroshi*

Annals of Nuclear Energy, 56, p.136 - 142, 2013/06

 Times Cited Count:6 Percentile:44.02(Nuclear Science & Technology)

The transmutation of iodine-129 in accelerator driven system (ADS) is studied. The sodium iodide assembly loadings inside the core of ADS and in the surrounding core region are considered. The introduced concept of ADS with a power of 800 MWt is able to transmute 250 kg/y of minor actinides (MAs) and 46 kg/y of Iodine-129 that supports ten PWRs. The initial loading masses of MAs and I-129 in ADS were equal to 3810 kg and 824 kg, respectively.

Journal Articles

Development of $$^{99}$$Mo-$$^{rm 99m}$$Tc domestic production with high-density MoO$$_{3}$$ pellets by (n,$$gamma$$) reaction

Tsuchiya, Kunihiko; Tanase, Masakazu*; Takeuchi, Nobuhiro*; Kobayashi, Masaaki*; Hasegawa, Yoshio*; Yoshinaga, Hideo*; Kaminaga, Masanori; Ishihara, Masahiro; Kawamura, Hiroshi

Proceedings of 5th International Symposium on Material Testing Reactors (ISMTR-5) (Internet), 10 Pages, 2012/10

As one of effective uses of the JMTR, JAEA has a plan to produce $$^{99}$$Mo by (n, $$gamma$$) method, a parent nuclide of $$^{rm 99m}$$Tc. In case of Japan, the supplying of $$^{99}$$Mo depends only on imports from foreign countries. The R&D on production method of $$^{99}$$Mo -$$^{rm 99m}$$Tc has been performed with Japanese industrial users under the cooperation programs. The main R&D items for the production are (1) Fabrication of irradiation target such as the sintered MoO$$_{3}$$ pellets, (2) Separation and concentration of $$^{rm 99m}$$Tc by the solvent extraction from Mo solution, (3) Examination of $$^{rm 99m}$$Tc solution for a medicine, and (4) Mo recycling from Mo generator and solution. In this paper, the status of the R&D is introduced for the production of $$^{99}$$Mo -$$^{rm 99m}$$Tc.

Journal Articles

Status of $$^{99}$$Mo-$$^{99m}$$Tc production development by (n,$$gamma$$) reaction

Tsuchiya, Kunihiko; Mutalib, A.*; Chakrov, P.*; Kaminaga, Masanori; Ishihara, Masahiro; Kawamura, Hiroshi

JAEA-Conf 2011-003, p.137 - 141, 2012/03

As one of effective uses of the JMTR, JAEA has a plan to produce $$^{99}$$Mo by (n,$$gamma$$) method, a parent nuclide of $$^{99m}$$Tc. In case of Japan, the supplying of $$^{99}$$Mo depends only on imports from foreign countries, the R&D on production method of $$^{99}$$Mo-$$^{99m}$$Tc has been performed with foreign countries and Japanese industrial users under the cooperation programs. The main R&D items for the production are (1) Fabrication of irradiation target such as the sintered MoO$$_{3}$$ pellets, (2) Separation and concentration of $$^{99m}$$Tc by the solvent extraction from Mo solution, (3) Examination of $$^{99m}$$Tc solution for a medicine, and (4) Mo recycling from Mo generator and solution. Especially, it is important to establish the separation and extraction methods in the item (2) and the experiments and information exchanges in some methods have been carried out under the international cooperation. In this paper, the status of the R&D is introduced for the production of $$^{99}$$Mo-$$^{99m}$$Tc.

Journal Articles

Managing beryllium in nuclear facility applications

Longhurst, G. R.*; Tsuchiya, Kunihiko; Dorn, C.*; Folkman, S. L.*; Fronk, T. H.*; Ishihara, Masahiro; Kawamura, Hiroshi; Tranter, T. N.*; Rohe, R.*; Uchida, Munenori*; et al.

Nuclear Technology, 176(3), p.430 - 441, 2011/12

 Times Cited Count:12 Percentile:66.82(Nuclear Science & Technology)

Beryllium has important roles in nuclear facilities such as fission reactors and fusion reactors. Its neutron multiplication capability and low atomic weight make it very useful as a reflector in fission reactors. In both applications, the beryllium and the impurities in it become activated by neutrons transmutating to radionuclides, some of which are long-lived and difficult to dispose of. Also, gas production, notably helium and tritium, results in swelling, embrittlement, and cracking, which means that the beryllium must be replaced periodically, especially in fission reactors where dimensional tolerances must be maintained. It has long been known that neutron activation of inherent iron and cobalt in the beryllium results in significant $$^{60}$$Co activity. In 2001, it was discovered that activation of naturally occurring contaminants in the beryllium creates sufficient $$^{14}$$C and $$^{94}$$Nb to render the irradiated beryllium "Greater-Than-Class-C" for disposal in US radioactive waste facilities. In this paper we review the extent of the disposal issue, processes that have been investigated or considered for improving the disposability of irradiated beryllium, and approaches for recycling.

Journal Articles

Present status of refurbishment and irradiation technologies in JMTR

Inaba, Yoshitomo; Ishihara, Masahiro; Niimi, Motoji; Kawamura, Hiroshi

Journal of Nuclear Materials, 417(1-3), p.1348 - 1351, 2011/10

 Times Cited Count:3 Percentile:26.02(Materials Science, Multidisciplinary)

The Japan Materials Testing Reactor (JMTR) is a testing reactor with first criticality in March 1968. JMTR has been utilized for various neutron irradiation tests on nuclear fuels and materials, as well as for radioisotope production. The operation of JMTR was stopped in August 2006 for the refurbishment and the improvement. The renewed JMTR will be operated from FY 2011. Aiming at the restart of the new JMTR, the renewal of the aging reactor components, the preparation of the new irradiation facilities, and the development of the irradiation technologies have been carried out in JMTR. The irradiation facilities and technologies can also contribute to the development of fusion reactor materials. In this paper, the present status of the refurbishment and the irradiation technologies focused on the instrumentation in JMTR are described.

Journal Articles

Feasibility of uranium spallation target in accelerator-driven system

Ismailov, K.*; Saito, Masaki*; Sagara, Hiroshi*; Nishihara, Kenji

Progress in Nuclear Energy, 53(7), p.925 - 929, 2011/09

 Times Cited Count:10 Percentile:60.88(Nuclear Science & Technology)

A feasibility study on natural uranium spallation target in accelerator-driven system (ADS) for minor actinide (MA) transmutation was performed. As a result of comparative study of uranium and lead-bismuth (PbBi) targets in the bare case without blanket surrounding, it was found that uranium target had better neutron generation performance, but limited by the geometrical size due to high neutron absorption in $$^{238}$$U. In ADS for MA transmutation, uranium used as target instead of PbBi also absorbs neutrons passing the target area. More realistic concept of pin type uranium spallation target cooled by liquid PbBi was considered aiming at enhancing spallation target performance in terms of neutron generation efficiency and operation temperature. The uranium pin target design had nothing better effects on neutron balance of such system than a conventional PbBi target in ADS and it was concluded that uranium target was not suitable for the full-scale ADS.

Journal Articles

Identified charged hadron production in $$p + p$$ collisions at $$sqrt{s}$$ = 200 and 62.4 GeV

Adare, A.*; Afanasiev, S.*; Aidala, C.*; Ajitanand, N. N.*; Akiba, Yasuyuki*; Al-Bataineh, H.*; Alexander, J.*; Aoki, Kazuya*; Aphecetche, L.*; Armendariz, R.*; et al.

Physical Review C, 83(6), p.064903_1 - 064903_29, 2011/06

 Times Cited Count:184 Percentile:99.44(Physics, Nuclear)

Transverse momentum distributions and yields for $$pi^{pm}, K^{pm}, p$$, and $$bar{p}$$ in $$p + p$$ collisions at $$sqrt{s}$$ = 200 and 62.4 GeV at midrapidity are measured by the PHENIX experiment at the RHIC. We present the inverse slope parameter, mean transverse momentum, and yield per unit rapidity at each energy, and compare them to other measurements at different $$sqrt{s}$$ collisions. We also present the scaling properties such as $$m_T$$ and $$x_T$$ scaling and discuss the mechanism of the particle production in $$p + p$$ collisions. The measured spectra are compared to next-to-leading order perturbative QCD calculations.

Journal Articles

Azimuthal correlations of electrons from heavy-flavor decay with hadrons in $$p+p$$ and Au+Au collisions at $$sqrt{s_{NN}}$$ = 200 GeV

Adare, A.*; Afanasiev, S.*; Aidala, C.*; Ajitanand, N. N.*; Akiba, Yasuyuki*; Al-Bataineh, H.*; Alexander, J.*; Aoki, Kazuya*; Aphecetche, L.*; Aramaki, Y.*; et al.

Physical Review C, 83(4), p.044912_1 - 044912_16, 2011/04

 Times Cited Count:8 Percentile:49.7(Physics, Nuclear)

Measurements of electrons from the decay of open-heavy-flavor mesons have shown that the yields are suppressed in Au+Au collisions compared to expectations from binary-scaled $$p+p$$ collisions. Here we extend these studies to two particle correlations where one particle is an electron from the decay of a heavy flavor meson and the other is a charged hadron from either the decay of the heavy meson or from jet fragmentation. These measurements provide more detailed information about the interaction between heavy quarks and the quark-gluon matter. We find the away-side-jet shape and yield to be modified in Au+Au collisions compared to $$p+p$$ collisions.

Journal Articles

Human resource development program using JMTR

Ishitsuka, Etsuo; Kitagishi, Shigeru; Aoyama, Masashi; Kawamata, Kazuo; Nagao, Yoshiharu; Ishihara, Masahiro; Kawamura, Hiroshi

Proceedings of 1st Asian Symposium on Material Testing Reactors (ASMTR 2011), p.111 - 115, 2011/02

JAEA Reports

Conceptual study for new $$^{99}$$Mo-production facility in JMTR

Kimura, Akihiro; Iimura, Koichi; Hosokawa, Jinsaku; Izumo, Hironobu; Hori, Naohiko; Nakagawa, Tetsuya; Kanno, Masaru; Ishihara, Masahiro; Kawamura, Hiroshi

JAEA-Review 2009-072, 18 Pages, 2010/03

JAEA-Review-2009-072.pdf:9.29MB

JAEA has a plan to produce $$^{99}$$Mo, a parent nuclide of $$^{99m}$$Tc. At present, radioisotopes are indispensable for a diagnosis and treatment in the medical field. Demand of $$^{99m}$$Tc (half life 6h) used as a radiopharmaceutical increases up year by year. Moreover, the expansion of demand will be expected in future. However, the supply of $$^{99}$$Mo in Japan depends fully on the import from foreign countries. Therefore, it is necessary to supply $$^{99}$$Mo stably by the domestic production. There are two methods of $$^{99}$$Mo (half life 65.9h) production; the one is the nuclear fission (n,fiss) method, and the other is the (n,$$gamma$$) method using the $$^{98}$$Mo target. $$^{99}$$Mo production in the JMTR with the (n,$$gamma$$) method was studied and evaluated. As a result, it was found that the partial amount of $$^{99}$$Mo demand is possible to supply stably if a new hydraulic-rabbit-irradiation-facility (HR) is used.

JAEA Reports

Current status of JMTR refurbishment project

Kaminaga, Masanori; Niimi, Motoji; Hori, Naohiko; Takahashi, Kunihiro; Kanno, Masaru; Nakagawa, Tetsuya; Nagao, Yoshiharu; Ishihara, Masahiro; Kawamura, Hiroshi

JAEA-Review 2009-056, 20 Pages, 2010/02

JAEA-Review-2009-056.pdf:8.35MB

The JMTR is a light water moderated and cooled, beryllium reflected tank- type reactor using LUE silicide plate-type fuels. Its thermal power is 50 MW, maximum thermal and fast neutron flux is 4 $$times$$ 10$$^{18}$$ m$$^{-2}$$s$$^{-1}$$. First criticality was achieved in March 1968, and its operation was stopped from August, 2006 for the refurbishment. The refurbishment is scheduled from the beginning of FY2007 to the end of FY2010. The renewed and upgraded JMTR will be re-started from FY2011. An investigation on aged components (aged-investigation) was carried out for concrete structures of the JMTR reactor building, exhaust stack, etc., and for tanks in the primary cooling system, heat exchangers, pipes in the secondary cooling system, cooling tower, emergency generators and so on, in order to identify their integrity. The aged-investigation was carried out at the beginning of FY2007. As a result, some components were decided to replace from viewpoints of future maintenance and improvement of reliability, and some components or structures were decided to repair. A visual inspection of inner side of the pressure vessel was carried out using an underwater camera in FY2008, and no serious damage was observed. Up to now, refurbishment works are in progress according to the planned schedule. In this paper, current status of JMTR refurbishment project is presented.

Journal Articles

Refurbishment status and future program of Japan Materials Testing Reactor (JMTR)

Ishihara, Masahiro; Kawamura, Hiroshi; Niimi, Motoji; Kaminaga, Masanori; Hori, Naohiko; Nagao, Yoshiharu

Proceedings of 12th International Group on Research Reactors (12th IGORR) (USB Flash Drive), 10 Pages, 2009/10

The JMTR is a light water cooling tank typed reactor with first criticality in March 1968. The JMTR has been applied to fuel/material irradiation tests for LWRs, HTGR, fusion reactor and RI production. However, the JMTR operation was once stopped at August 2006, and the refurbishment works are now conducting. The reactor facilities will be renewed taking four years from the beginning of FY 2007, and necessary examination and works are carrying out on schedule. The renewed JMTR will be started from FY 2011, and be operated for a period of about 20 years until around FY 2030. The usability improvement of the JMTR, e.g. higher reactor availability-factor, shortening turnaround time to get irradiation results, attractive irradiation cost, business confidence, is also discussing with users as the preparations for re-operation. In the paper, status of the refurbishment of reactor facilities are introduced, moreover the future program using the JMTR will be prescribed.

JAEA Reports

Investigation of temperature measurement method in HTTR reactor

Tomimoto, Hiroshi; Hamamoto, Shimpei; Tochio, Daisuke; Ueta, Shohei; Umeda, Masayuki; Nishihara, Tetsuo

JAEA-Technology 2009-026, 37 Pages, 2009/08

JAEA-Technology-2009-026.pdf:8.9MB

HTTR (High Temperature Engineering Test Reactor) loaded the first driver fuel in July 1998 and reached first criticality state in November 1998. After power increasing examination, HTTR has been conducting safety demonstration test and sequentially acquiring basic technical data of high temperature gas cool reactor. Temperature measurement inside the reactor is planed in the next midterm plan to improve HTTR performance. This report describes the investigation result of fuel temperature measurement method which is applicable to critical irradiation test.

JAEA Reports

Handling of HTTR second driver fuel elements in assembling and storage working

Tomimoto, Hiroshi; Kato, Yasushi; Owada, Hiroyuki; Sato, Nao; Shimazaki, Yosuke; Kozawa, Takayuki; Shinohara, Masanori; Hamamoto, Shimpei; Tochio, Daisuke; Nojiri, Naoki; et al.

JAEA-Technology 2009-025, 29 Pages, 2009/06

JAEA-Technology-2009-025.pdf:21.78MB

The first driver fuel of the HTTR (High Temperature Engineering test Reactor) was loaded in 1998 and the HTTR reached first criticality state in the same year. The HTTR has been operated using the first driver fuel for a decade. In Fuel elements assembling, 4770 of fuel rods which consist of 12 kinds of enrichment uranium are loaded into 150 fuel graphite blocks for HTTR second driver fuel elements. Measures of prevention of fuel rod miss loading, are employed in fuel design. Additionally, precaution of fuel handling on assembling are considered. Reception of fuel rods, assembling of fuel elements and storage of second driver fuels in the fresh fuel storage rack in the HTTR were started since June, 2008. Assembling, storage and pre-service inspection were divided into three parts. The second driver fuel assembling was completed in September, 2008. This report describes concerns of fuel handling on assembling and storage work for the HTTR fuel elements.

Journal Articles

Achievements of HTTR second driver fuel elements assembly working

Tomimoto, Hiroshi; Umeda, Masayuki; Nishihara, Tetsuo; Iyoku, Tatsuo

UTNL-R-0471, p.11_1 - 11_9, 2009/03

The first driver fuel of the HTTR (High Temperature Engineering test Reactor) was loaded in 1998 and the HTTR reached first criticality state in the same year. The HTTR has been operated using the first driver fuel for a decade. HTTR reactor core consist of twelve kinds of enriched uranium fuel elements. Fuel rods were designed for avoiding fuel rod false loading because fuel rods number is 4770, and it was considered on handling. Reception of fuel rods, assembling of fuel elements and storage of second driver fuels in the fresh fuel storage rack in the HTTR were started since June, 2008. Pre-service inspection was finished. And the second driver fuel assembling was completed in September, 2008. This report describes concerns of fuel handling on assembling and storage work for the HTTR fuel elements.

71 (Records 1-20 displayed on this page)