Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Mochizuki, Akihito; Ishii, Eiichi
Isotope News, (784), p.23 - 27, 2022/12
no abstracts in English
Ishii, Eiichi
International Journal of Rock Mechanics and Mining Sciences, 159, p.105229_1 - 105229_17, 2022/11
Times Cited Count:0 Percentile:0.02(Engineering, Geological)In an underground repository for high-level radioactive waste disposal, fracture transmissivity in an excavation damaged zone (EDZ) along tunnels or deposition holes can decrease during the post-closure period via processes such as self-sealing by clay-swelling at the EDZ's fracture surface or an increase in effective normal stress acting on the fractures owing to swelling of backfilling or buffer materials. Hydromechanical coupling models for the stress-dependence of fracture transmissivity are helpful to estimate the change in an EDZ's fracture transmissivity after closure. The applicability of the applied models should be confirmed by in situ tests at the given site; this appears to be facilitated by using constant-head step injection tests. However, injection testing is rarely applied to EDZ fractures. To investigate the applicability of injection tests, the present study performed them on single, tensile EDZ fractures in the Horonobe Underground Research Laboratory hosted by poorly swelling mudstone. Furthermore, the Barton-Bandis normal stress-dependent fracture-closure model quantified the stress-dependence of EDZ facture transmissivity. The fracture's hydraulic aperture increased gradually during injection, and its variation was well reproduced by fitting the model. Although the model requires the normal stress, this parameter was reasonably estimated by the fitting analyses. Constant-head step injection tests coupled with the Barton-Bandis model is believed to be a convenient method for preliminarily quantifying or verifying the stress dependence of EDZ fracture transmissivity, at least for poorly self-sealed, tensile EDZ-fractures.
Ono, Hirokazu; Ishii, Eiichi
Geomechanics for Energy and the Environment, 31, p.100317_1 - 100317_9, 2022/09
Times Cited Count:3 Percentile:87.01(Energy & Fuels)Ozaki, Yusuke; Ishii, Eiichi; Sugawara, Kentaro*
Geomechanics for Energy and the Environment, 31, p.100311_1 - 100311_13, 2022/09
Times Cited Count:1 Percentile:56.74(Energy & Fuels)This study analyzed the long-term hydraulic pressure data during the excavation of Horonobe URL to estimate the variation of effective-hydraulic-conductivity. We performed the numerical simulation with the poroelastic effect for the estimation because the observed hydraulic pressure is highly affected by the Mandel-Cryer effect. The evaluation of the observed data based on our simulation results showed that the effective-hydraulic-conductivity gradually decreases from 400 m to 500 m in depth and is as low as the intact rock at depths greater than 500 m. Not only the analysis based on our simulation results but also the analysis based on analytical solution indicate the domain with different hydraulic properties in the Wakkanai Formation. These results suggest that the fracture-hydraulic-connectivity changes not abruptly but gradually over several tens of meters around the predicted boundary.
Honda, Norihisa; Dei, Shuntaro; Ishii, Eiichi
JAEA-Data/Code 2022-002, 37 Pages, 2022/06
Long-term monitoring of pore pressure/groundwater level has been performed at the deep boreholes HDB-1-11 and PB-V01 and seven shallow boreholes in the Horonobe Underground Research Laboratory Project. This report summarizes the results obtained from the starts of monitoring to March 2021.
Mochizuki, Akihito; Ishii, Eiichi
Hydrogeology Journal, 30(3), p.813 - 827, 2022/05
Times Cited Count:0 Percentile:0(Geosciences, Multidisciplinary)Assessment of the level of activity of advective transport through faults and fractures is essential for guiding the geological disposal of radioactive waste. In this study, the advective flow (active, inactive) of meteoric water through fractures is assessed by comparing stable isotopes (D and
O) between fracture and pore waters obtained from four boreholes in marine deposits in the Horonobe area, Japan. At 27-83-m depth in one borehole and 28-250 m in another, the isotopic compositions of pore and fracture water reflect mixing with meteoric water, with stronger meteoric-water signatures being observed in the fracture water than in pore water of the rock matrix. At greater depths in these boreholes and at all sampling depths in the other two studied boreholes, the isotopic compositions of fracture and pore waters are comparable. These results suggest that the advective flow of meteoric water is active at shallow depths where fossil seawater is highly diluted in the two boreholes. This interpretation is compatible with the occurrence of present or paleo meteoric waters and tritium, whereby present meteoric water and tritium are limited to those depths in the two boreholes. This difference in the level of activity of advective flow is probably because of the glacial-interglacial difference in hydraulic gradients resulting from sea-level change. Although fractures are hydraulically connected to the surface through the sedimentary rock, advective flow through them is inferred to remain inactive so long as sea level does not fall substantially.
Aoyagi, Kazuhei; Ishii, Eiichi; Chen, Y.*; Ishida, Tsuyoshi*
Rock Mechanics and Rock Engineering, 55(4), p.1855 - 1869, 2022/04
Times Cited Count:1 Percentile:56.74(Engineering, Geological)Safety assessments related to the long-term migration of radionuclides in high-level radioactive waste disposal repositories need to consider the evolution of permeability associated with excavation-damaged-zone (EDZ) fractures. We observed EDZ fractures preserved by resin injection around a gallery in the Horonobe Underground Research Laboratory in Japan with the aim of assessing the sensitivity of aperture to shear displacement (i.e., dilation angle) in EDZ fractures. To date, shear displacement along EDZ fractures has not been quantified despite its importance for estimating the evolution of fracture aperture around excavations after the repository is backfilled. Enlarged photographs of EDZ fractures fixed by resin were examined to obtain reliable and accurate measurements of the shear displacement and aperture of EDZ fractures without additional disturbance. Measured shear displacement and fracture aperture are poorly correlated, meaning that fracture aperture is insensitive to shear displacement after fracture formation. This insensitivity is closely reproduced by a previously reported empirical relationship and is attributed to the relatively high levels of normal stress acting on fracture surfaces at 350 m depth, which suppress shear-induced dilatation. Considering this insensitivity between fracture aperture and shear displacement, shear-induced dilation of EDZ fractures is estimated to be negligible even if the fractures are shear-displaced after the repository is backfilled, so long as the normal stress acting on fracture surfaces does not reduce substantially. The applied resin injection and fracture observations constitute a useful tool for helping to assess the likelihood of shear-induced dilation after the repository is backfilled.
Muraoka, Ami*; Chiyonobu, Shun*; Arato, Hiroyuki*; Martizzi, P.*; Ishii, Eiichi
Sekiyu Gijutsu Kyokai-shi (CD-ROM), 87(1), p.86 - 88, 2022/00
no abstracts in English
Ishii, Eiichi
Engineering Geology, 294, p.106369_1 - 106369_12, 2021/12
Times Cited Count:7 Percentile:79.56(Engineering, Geological)The transmissivities (T) of fractures can be related to the fracture roughness (), initial aperture (
), effective normal stress (
'
), and the tensile strength (
'
) of the intact rock, based on the Barton-Bandis model and their data, and the T (or
) can increase by shear-induced dilation. Previous studies revealed that the T of fractures in fault zones, detected as flow anomalies by borehole investigations at six sites, uniformly decreases with the increasing effective mean stress normalized to the
'
. If this uniform change in T can be explained by
'
-dependent fracture-normal-displacement following the Baron-Bandis model, the T represents the highest potential T of fractures in fault zones which can increase by shear-induced dilation. To verify this possibility, this study estimated the
of the fractures using the T,
'
, and possible
and
'
. Then, using this estimated
, the changes in T were simulated, varying
'
. The results well reproduced the observed uniform change in T.
Sakai, Toshihiro; Ishii, Eiichi
JAEA-Data/Code 2021-009, 13 Pages, 2021/08
Japan Atomic Energy Agency is performing the Horonobe Underground Research Laboratory Project, which includes a scientific study of the deep geological environment as a basis of research and development for the geological disposal of high level radioactive wastes, in order to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in the sedimentary rock. The numerical data of 3D geological model in regional-scale was compiled in 2019 as JAEA-Data/Code 2019-007, and then this report updates a part of the numerical data of 3D geological model around the underground facilities.
Ono, Hirokazu; Takeda, Masaki; Ishii, Eiichi
Extended abstract of International Conference on Coupled Processes in Fractured Geological Media; Observation, Modeling, and Application (CouFrac 2020) (Internet), 4 Pages, 2020/11
Ozaki, Yusuke; Ishii, Eiichi; Sugawara, Kentaro*
Extended abstract of International Conference on Coupled Processes in Fractured Geological Media; Observation, Modeling, and Application (CouFrac 2020) (Internet), 4 Pages, 2020/11
We perform the numerical simulation of the response of hydraulic head observed in HDB-6 during the excavation of the Horonobe URL to verify the existence of low effective permeable domain in the subsurface. The low permeable domain as an intact rock due to the low hydraulic fracture connectivity is estimated to exist in the deep domain while the permeability of the shallow domain is relatively high due to the hydraulic fracture connectivity there. Our simulation shows that the observed hydraulic head is affected by the Mandel-Cryer effect due to the hydrogeological structure and the effect for the duration of over years requires the low permeability as an intact rock in the deep domain. These results verify the existence of the low effective permeable domain in the deep subsurface estimated by the previous study.
Ishii, Eiichi
Engineering Geology, 275, p.105748_1 - 105748_12, 2020/09
Times Cited Count:6 Percentile:52.26(Engineering, Geological)A constant-head step injection test using a conventional straddle-packer system was performed for a normal fault in siliceous mudstone. The test applied a new method whereby axial displacements of isolated test sections in a borehole during injection are monitored by measuring the pressures of sliding packers and the pore pressure in the test section. The measured pressures and axial displacement, and the injection flow rate, were used to estimate the hydraulic aperture, shear displacement, normal compliance, normal stress, shear stiffness and hydraulic dilation angle of the fault during the test. The injection successfully yielded a large shear displacement during normal faulting of up to 13.3-49.5 mm (including the estimation error), which left residual shear displacement of 2.8-10.4 mm after a remarkable shear-slip event. The shear stiffness during faulting is estimated to be 2.3 10
to 8.4
10
Pa m
(considering the estimation error), which is consistent with empirically predicted values based on previous studies. The hydraulic dilation angle was inferred to be effectively zero as the residual shear displacement did not leave any increase in hydraulic aperture. The experimental method applied here does not require specialized equipment and could aid in the investigation of the hydromechanical behavior of subsurface fractures or aquifers.
Aoki, Tomoyuki*; Tani, Takuya*; Sakai, Kazuo*; Koga, Yoshihisa*; Aoyagi, Kazuhei; Ishii, Eiichi
JAEA-Research 2020-002, 83 Pages, 2020/06
The Japan Atomic Energy Agency (JAEA) has conducted with the Horonobe Underground Research Project in Horonobe, Teshio-gun, Hokkaido for the purpose of research and development related to geological disposal technology for high-level radioactive wastes in sedimentary soft rocks. The geology around the Horonobe Underground Research Laboratory (HURL) is composed of the Koetoi diatomaceous mudstone layer and the Wakkanai siliceous layer, both of which contain a large amount of diatom fossils. Since these rocks exhibit relatively high porosity but low permeability, it is important to investigate the poro-elastic characteristics of the rock mass. For this objective, it is necessary to measure parameters based on the poro-elastic theory. However, there are few measurement results of the poro-elastic parameters for the geology around HURL, and the characteristics such as dependence on confining pressure are not clearly understood. One of the reasons is that the rocks show low permeability and the pressure control during testing is difficult. Therefore, a poro-elastic parameter measurement test was conducted on the siliceous mudstone of the Wakkanai formation to accumulate measurement results on the poro-elastic parameters and to examine the dependence of the parameters on confining pressure. As a result, some dependency of the poro-elastic parameters on confining pressure was observed. Among the measured or calculated poro-elastic parameters, the drained bulk modulus increased, while the Skempton's pressure coefficient, and the Biot-Wills coefficient in the elastic region decreased with the increase in confining pressure. The measurement results also inferred that the foliation observed in the rock specimens might impact a degree of dependency of those parameters on confining pressure.
Nakayama, Masashi; Saiga, Atsushi; Kimura, Shun; Mochizuki, Akihito; Aoyagi, Kazuhei; Ono, Hirokazu; Miyakawa, Kazuya; Takeda, Masaki; Hayano, Akira; Matsuoka, Toshiyuki; et al.
JAEA-Research 2019-013, 276 Pages, 2020/03
The Horonobe Underground Research Laboratory (URL) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies for geological disposal of High-level Radioactive Waste through investigations of the deep geological environment within the host sedimentary rock at Horonobe Town in Hokkaido, north Japan. The investigations will be conducted in three phases, namely "Phase 1: Surface based investigations", "Phase 2: Construction phase" (investigations during construction of the underground facilities) and "Phase 3: Operation phase" (research in the underground facilities). According to the research plan described in the 3rd Mid- and Long- term Plan of JAEA, "Near-field performance study", "Demonstration of repository design option", and "Verification of crustal-movement buffering capacity of sedimentary rocks" are important issues of the Horonobe URL Project, and schedule of future research and backfill plans of the project will be decided by the end of 2019 Fiscal Year. The present report summarizes the research and development activities of these 3 important issues carried out during 3rd Medium to Long-term Research Phase.
Aoyagi, Kazuhei; Chen, Y.*; Ishii, Eiichi; Sakurai, Akitaka; Miyara, Nobukatsu; Ishida, Tsuyoshi*
JAEA-Research 2019-011, 50 Pages, 2020/03
In this research, we performed the resin injection experiment at the 350 m Gallery of Horonobe Underground Research Laboratory in order to identify the distribution of fractures induced around the gallery owing to excavation. We also observed the rock cores obtained around the resin injection borehole under ultraviolet light. As a result, the extent of the development of EDZ fracture was 0.9 m from the gallery wall. In the depth within 0.4 m from the gallery wall, the density of the EDZ fracture is higher than the depth more than 0.4 m from the gallery wall. As a result of the analysis on the fracture aperture by image processing, the fractures with a large aperture (1.02 mm in maximum) were observed within 0.3 m from the gallery wall, while the maximum aperture was 0.19 mm in the depth more than 0.3 m from the gallery wall.
Samata, Yoichi; Ishii, Eiichi
JAEA-Data/Code 2019-020, 69 Pages, 2020/03
In Horonobe Underground Research Laboratory Project, hydraulic tests for the excavation damaged zone have been performed in order to characterize the hydrological properties of the zone. This report summarized the results of the hydraulic tests and pore-pressure monitoring which have been done from April 2016 to March 2019.
Mochizuki, Akihito; Ishii, Eiichi; Miyakawa, Kazuya; Sasamoto, Hiroshi
Engineering Geology, 267, p.105496_1 - 105496_11, 2020/03
Times Cited Count:2 Percentile:20.54(Engineering, Geological)The mechanical and hydraulic properties of rocks around mine drifts change significantly during the construction and operation of a radioactive-waste repository, with air intrusion causing the oxidation of rock and groundwater in excavation-damaged zones (EDZ). Redox conditions in such zones associated with niches excavated in mudstone at the Horonobe Underground Research Laboratory (URL), which is believed to be generally representative of conditions that could exist in the EDZ of a repository, were studied with the aim of improving our understanding of factors that control redox conditions in such rock-groundwater systems. Groundwater Eh values around the niches have reducing values of less than -150 mV. The SO concentration, regarded as an oxidation indicator, is consistently as low as 1
mol L
. Gas occupies more than 50% of zone volumes, including CH
and CO
with traces of N
and O
. Cores drilled from host rock around a URL gallery were analyzed, with no pyrite dissolution or precipitation of calcium sulfates being found. It is concluded that oxidizing conditions do not exist in the excavation-damaged zones, which is attributed to the suppression of air intrusion by the release of CH
and CO
from groundwater as pressures decreased and their accumulation in fractures. The modeling of oxygen diffusion into host rock further indicates that a reducing environment is maintained around the URL drifts.
Aoyagi, Kazuhei; Chen, Y.*; Ishii, Eiichi; Sakurai, Akitaka; Ishida, Tsuyoshi*
Proceedings of 5th ISRM Young Scholars' Symposium on Rock Mechanics and International Symposium on Rock Engineering for Innovative Future (YSRM 2019 and REIF 2019) (USB Flash Drive), 6 Pages, 2019/12
In the excavation of a repository for high-level radioactive waste (HLW) disposal, it is important to understand the hydro-mechanical characteristics of the Excavation Damaged Zone (EDZ) induced around the gallery because EDZ can lead to the migration pathway of radionuclides. Thus, we performed the resin injection experiment at the 350 m gallery of Horonobe Underground Research Laboratory in Japan to investigate the characteristics of fractures induced around the gallery wall in excavation. In the experiment, we developed a low viscosity resin mixed with a fluorescent substance and injected to the borehole drilled about 1 m in length. After the experiment, we overcored around the injection borehole. The observation on the cut surface of the overcore under ultraviolet light revealed that the fractures were distributed within 0.8 m from the gallery wall. Fractures are interconnected each other in particular within 0.25 m from the niche wall. Furthermore, fractures with large aperture (about 1.0 mm) were developed in that region. These observed results will be fundamental information for understanding of the fracturing process in the EDZ.
Samata, Yoichi; Iwata, Tatsuya*; Ishii, Eiichi
JAEA-Data/Code 2019-008, 19 Pages, 2019/09
In Horonobe Underground Research Laboratory Project, hydraulic tests for the excavation damaged zone have been performed in order to characterize the hydrological properties of the zone. In PB-V01 borehole, pore pressure observation started in October 2008, but the pore pressure is currently reduced by about 3 MPa compared to that time. In this report, in order to evaluate the influence that this pore pressure drop has on the permeability of the rock, the results of the in-situ permeability test using the long-term hydraulic pressure monitoring device installed in the same hole are summarized.