Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Tanimura, Yoshihiko; Yoshitomi, Hiroshi; Nishino, Sho; Tsuji, Tomoya; Fukami, Tomoyo; Shinozuka, Tomoki; Oishi, Kohei; Ishii, Masato; Takamiya, Kei; Onuki, Takaya; et al.
Radiation Measurements, 176, p.107196_1 - 107196_6, 2024/08
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)The ICRU has proposed to change the definitions of the operational quantities used for the area and individual monitoring for external exposure in the ICRU Report 95. As introducing the new operational quantities into the radiation monitoring may affect the dose assessment results using the present personal dosimeters, it is necessary to characterize the energy spectrum in the workplace and the energy dependency of the dosimeters to be used. In this work the photon spectra were measured using a NaI(Tl) scintillation detector or a LaBr(Ce) scintillation detector at the workplaces in the Japanese Research Reactor No.3 (JRR-3) and the Japan Proton Accelerator Research Complex (J-PARC) at Japan Atomic Energy Agency (JAEA). Then the present and new operational quantities were evaluated using the above mention spectra at the workplaces and compared each other.
Fukasawa, Tetsuo*; Suzuki, Akihiro*; Endo, Yoichi*; Inagaki, Yaohiro*; Arima, Tatsumi*; Muroya, Yusa*; Endo, Keita*; Watanabe, Daisuke*; Matsumura, Tatsuro; Ishii, Katsunori; et al.
Journal of Nuclear Science and Technology, 61(3), p.307 - 317, 2024/03
Times Cited Count:1 Percentile:34.39(Nuclear Science & Technology)A flexible waste management system (FWM) is being developed to apply future MA partitioning and transmutation (P&T) technology to current HLLW. This FWM system will store high-level waste (HLLW) in granular form until MA partitioning and transmutation technology is realized. The feasibility of the main process was essentially confirmed by basic experiments and preliminary thermal analysis for granule production by rotary kiln from simulated HLLW and for temporary storage (50 years) of HLW granules at the HLW storage facility, respectively. The granule production experiments revealed that relatively large particles can be produced by the rotary kiln. The results of the thermal analysis showed that the small diameter canisters could be used to safely store the granules at a higher storage density than vitrified HLW. The effectiveness of the FWM system in terms of potential radiotoxicity and repository area was also evaluated, and it was shown that FWM can reduce these factors and has significant advantages in the disposal of HLW generated in current reprocessing plants. Since LWR fuel is stored for a long period of time in Japan and the operation of a reprocessing plant is expected to start soon, the FWM system is considered to be an effective system for reducing the environmental burden of HLW disposal.
Izawa, Kazuhiko; Ishii, Junichi; Okubo, Takuya; Ogawa, Kazuhiko; Tonoike, Kotaro
Proceedings of 11th International Conference on Nuclear Criticality Safety (ICNC 2019) (Internet), 9 Pages, 2019/09
Japan Atomic Energy Agency, JAEA, is conducting the renewal program of the heterogeneous water moderated critical assembly STACY (Static Experiment Critical Facility) in order to verify the criticality calculation considering fuel debris which have been produced in the accident of Fukushima Daiichi Nuclear Power Station. The first criticality of the new STACY is scheduled at the beginning of 2021. After the first criticality, it is necessary to perform a series of critical experiments with a series of basic experimental core in order to gain a proficiency of operators and grasp the uncertainty that accompanies the result of critical experiments in STACY. Prior to the construction of the new STACY, a series of neutronic calculation was carried out for licensing and planning first series of critical experiment. In this paper, possible core configuration of the basic experimental core and their limitations are discussed and presented.
Kusano, Shogo*; Matsumura, Daiju; Ishii, Kenji*; Tanaka, Hirohisa*; Mizuki, Junichiro*
Nanomaterials (Internet), 9(4), p.642_1 - 642_14, 2019/04
Times Cited Count:10 Percentile:44.54(Chemistry, Multidisciplinary)Ishii, Kenji*; Toyama, Takami*; Asano, Shun*; Sato, Kentaro*; Fujita, Masaki*; Wakimoto, Shuichi; Tsutsui, Kenji*; Sota, Shigetoshi*; Miyawaki, Jun*; Niwa, Hideharu*; et al.
Physical Review B, 96(11), p.115148_1 - 115148_8, 2017/09
Times Cited Count:32 Percentile:77.86(Materials Science, Multidisciplinary)Kawasaki, Masatsugu; Nakajima, Junya; Yoshida, Keisuke; Kato, Saori; Nishino, Sho; Nozaki, Teo; Nakagawa, Masahiro; Tsunoda, Junichi; Sugaya, Yuki; Hasegawa, Rie; et al.
JAEA-Data/Code 2017-004, 57 Pages, 2017/03
In emergency situation of nuclear facilities, we need to estimate the radiation dose due to radiation and radioactivity to grasp the influence range of the accident in the early stage. Therefore, we prepare the case studies of dose assessment for public exposure dose and personal exposure dose and contribute them to emergency procedures. This document covers about accidents of nuclear facilities in Nuclear Science Research Institute and past accident of nuclear power plant, and it can be used for inheritance of techniques of emergency dose assessment.
Yoshida, Masahiro*; Ishii, Kenji; Naka, Makoto*; Ishihara, Sumio*; Jarrige, I.*; Ikeuchi, Kazuhiko*; Murakami, Yoichi*; Kudo, Kazutaka*; Koike, Yoji*; Nagata, Tomoko*; et al.
Scientific Reports (Internet), 6, p.23611_1 - 23611_8, 2016/03
Times Cited Count:1 Percentile:10.82(Multidisciplinary Sciences)Uematsu, Daisuke*; Sagayama, Hajime*; Arima, Takahisa*; Ishikawa, Jun*; Nakatsuji, Satoru*; Takagi, Hidenori*; Yoshida, Masahiro*; Mizuki, Junichiro; Ishii, Kenji
Physical Review B, 92(9), p.094405_1 - 094405_6, 2015/09
Times Cited Count:23 Percentile:66.10(Materials Science, Multidisciplinary)Fuji, Hiroyuki*; Aoki, So; Ishii, Tomohiro*; Sakai, Junichi*
Zairyo To Kankyo, 64(5), p.178 - 182, 2015/05
This study focused on a breakdown of passive film which is followed by rust staining, and the objective of this study was to clarify the effect of stability of passive film on the resistance of rust staining of stainless steels. Atomospheric exposure test was carried out for 12 months. In order to compare the stability of passive film, measurements of potential-decay curves, and potentiostatic polarization tests were performed in acidic aqueous chloride solution. As a result, rust area of austenitic stainless steel was higher than that of ferritic stainless steel. This order didn't follow the orders of pitting potentials and densities of inclusions on surface between specimens. On the contrary, the order of the resistance of rust staining of stainless steels followed the order of the stability of passive film. One of the reasons why the resistance of rust staining of austenitic stainless steel was worse than that of ferritic stainless steel was seemed that chloride more easily broke passive film on the surface of austenitic stainless and formed micro pits which become initiations of rust staining and increase density of stains.
Jarrige, I.*; Ishii, Kenji; Matsumura, Daiju; Nishihata, Yasuo; Yoshida, Masahiro*; Kishi, Hirofumi*; Taniguchi, Masashi*; Uenishi, Mari*; Tanaka, Hirohisa*; Kasai, Hideaki*; et al.
ACS Catalysis, 5(2), p.1112 - 1118, 2015/02
Times Cited Count:21 Percentile:47.22(Chemistry, Physical)Kobayashi, Fuyumi; Ishii, Junichi; Shirahashi, Koichi; Umeda, Miki; Sakuraba, Koichi
Kakuhan, Kongo Gijutsu To Toraburu Taisaku, p.341 - 344, 2014/10
The silver mediated electrochemical oxidation (Ag/MEO) process with the ultrasound agitation has been developed for the purpose of the mineralization of organic wastes containing transuranium nuclides at the nuclear fuel reprocessing process. In the Ag/MEO process, organic solvents are decomposed by divalent silver cations under the relatively low temperature and the ambient pressure condition. The ultrasound agitation is effective in mixing the electrolytic solutions and the organic solvents, and is expected to promote the oxidation of the organic solvents. Therefore, the Ag/MEO process with the ultrasound agitation could be a candidate for the treatment of organic solvents. Destruction tests of TBP and dodecane by the Ag/MEO process were conducted to optimize some treatment conditions. Under optimized conditions, the destruction tests of kerosene and TODGA were carried out. It was confirmed that the Ag/MEO process is effective for the mineralization of these organic solvents.
Takayama, Tomohiro*; Yaresko, A.*; Matsumoto, Akiyo*; Nuss, J.*; Ishii, Kenji; Yoshida, Masahiro*; Mizuki, Junichiro; Takagi, Hidenori*
Scientific Reports (Internet), 4, p.6818_1 - 6818_6, 2014/10
Times Cited Count:34 Percentile:81.71(Multidisciplinary Sciences)Pyon, S.*; Kudo, Kazutaka*; Matsumura, Junichi*; Ishii, Hiroyuki*; Matsuo, Genta*; Nohara, Minoru*; Hojo, Hajime*; Oka, Kengo*; Azuma, Masaki*; Garlea, V. O.*; et al.
Journal of the Physical Society of Japan, 83(9), p.093706_1 - 093706_5, 2014/09
Times Cited Count:34 Percentile:82.19(Physics, Multidisciplinary)Ishii, Kenji; Fujita, Masaki*; Sasaki, Takanori*; Minola, M.*; Dellea, G.*; Mazzoli, C.*; Kummer, K.*; Ghiringhelli, G.*; Braicovich, L.*; Toyama, Takami*; et al.
Nature Communications (Internet), 5, p.3714_1 - 3714_8, 2014/04
Times Cited Count:96 Percentile:94.33(Multidisciplinary Sciences)Hiraishi, Masatoshi*; Iimura, Soshi*; Kojima, Kenji*; Yamaura, Junichi*; Hiraka, Haruhiro*; Ikeda, Kazutaka*; Miao, P.*; Ishikawa, Yoshihisa*; Torii, Shuki*; Miyazaki, Masanori*; et al.
Nature Physics, 10(4), p.300 - 303, 2014/04
Times Cited Count:106 Percentile:95.15(Physics, Multidisciplinary)Yoshida, Masahiro*; Ishii, Kenji; Jarrige, I.*; Watanuki, Tetsu; Kudo, Kazutaka*; Koike, Yoji*; Kumagai, Kenichi*; Hiraoka, Nozomu*; Ishii, Hirofumi*; Tsuei, K.-D.*; et al.
Journal of Synchrotron Radiation, 21(1), p.131 - 135, 2014/01
Times Cited Count:3 Percentile:18.31(Instruments & Instrumentation)Ishii, Kenji; Jarrige, I.*; Yoshida, Masahiro*; Ikeuchi, Kazuhiko*; Inami, Toshiya; Murakami, Yoichi*; Mizuki, Junichiro
Journal of Electron Spectroscopy and Related Phenomena, 188, p.127 - 132, 2013/06
Times Cited Count:13 Percentile:57.76(Spectroscopy)Wakimoto, Shuichi; Ishii, Kenji; Kimura, Hiroyuki*; Ikeuchi, Kazuhiko*; Yoshida, Masahiro*; Adachi, Tadashi*; Casa, D.*; Fujita, Masaki*; Fukunaga, Yasushi*; Gog, T.*; et al.
Physical Review B, 87(10), p.104511_1 - 104511_7, 2013/03
Times Cited Count:10 Percentile:41.87(Materials Science, Multidisciplinary)Kokusen, Junya; Sumiya, Masato; Seki, Masakazu; Kobayashi, Fuyumi; Ishii, Junichi; Umeda, Miki
JAEA-Technology 2012-041, 32 Pages, 2013/02
Uranyl nitrate solution fuel used in the STACY and the TRACY is adjusted in the Fuel Treatment System, in which such parameters are varied as concentration of uranium, free nitric acid, soluble neutron poison, and so on. Operations for concentration and denitration of the solution fuel were carried out with an evaporator from JFY 2004 to JFY 2008 in order to adjust the fuel to the experimental condition of the STACY and the TRACY. In parallel, the solution fuel in which some kinds of soluble neutron poison were doped was also adjusted in JFY 2005 and JFY 2006 for the purpose of the STACY experiments to determine neutron absorption effects brought by fission products, etc. After these experiments in the STACY, a part of the solution fuel including the soluble neutron poison was purified by the solvent extraction method with mixer-settlers in JFY 2006 and JFY 2007. This report summarizes operation data of the Fuel Treatment System from JFY 2004 to JFY 2008.
Ishii, Kenji; Toyama, Takami*; Mizuki, Junichiro
Journal of the Physical Society of Japan, 82(2), p.021015_1 - 021015_24, 2013/02
Times Cited Count:24 Percentile:74.24(Physics, Multidisciplinary)