Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
関原 隆泰; 藤岡 宏之*; 石川 貴嗣*
Physical Review C, 97(4), p.045202_1 - 045202_9, 2018/04
被引用回数:4 パーセンタイル:40.92(Physics, Nuclear)We theoretically investigate a possibility of an bound state and its formation in the
reaction. First, in the fixed center approximation to the Faddeev equations we obtain an
bound state with a binding energy of 25 MeV and width of 19 MeV, where we take the
interaction with a coupling to the
channel from the linear
model. Then, in order to investigate the feasibility from an experimental point of view, we calculate the cross section of the
reaction at the photon energy in the laboratory frame around 1.2 GeV.
中島 健次; 川北 至信; 伊藤 晋一*; 阿部 淳*; 相澤 一也; 青木 裕之; 遠藤 仁*; 藤田 全基*; 舟越 賢一*; Gong, W.*; et al.
Quantum Beam Science (Internet), 1(3), p.9_1 - 9_59, 2017/12
J-PARC物質・生命科学実験施設の中性子実験装置についてのレビューである。物質・生命科学実験施設には23の中性子ビームポートがあり21台の装置が設置されている。それらは、J-PARCの高性能な中性子源と最新の技術を組み合わせた世界屈指の実験装置群である。このレビューでは、装置性能や典型的な成果等について概観する。
冨澤 宏光*; 佐藤 尭洋*; 小川 奏*; 渡川 和晃*; 田中 隆次*; 原 徹*; 矢橋 牧名*; 田中 均*; 石川 哲也*; 富樫 格*; et al.
High Power Laser Science and Engineering, 3, p.e14_1 - e14_10, 2015/04
被引用回数:6 パーセンタイル:36.7(Optics)自由電子レーザー(FEL)は、共振器を使用しない自己増幅自発放射(SASE)方式を用いている。この方式では、自然放射光を種光としてレーザー発振・増幅するため、発振したレーザー光のスペクトルや時間波形がスパイク状構造になる欠点がある。この問題点を解決するために、短波長光源である高次高調波をFELにインジェクションし、スペクトルや時間波形にスパイク構造のないフルコヒーレント化された極端紫外領域(波長61.2nm)のシードFEL光の発生に成功した。しかしながら、外部からのコヒーレント光をシード光として用いる場合、電子バンチとシード光のタイミングドリフトにより、シードFEL光の出力ゆらぎが大きくなり、発生頻度も減少する問題がある。この問題点を解決するために、電気光学(Electro-Optic: EO)効果を利用したタイミングモニターを開発し、FEL装置の診断セクションに導入した。これにより、シードFEL光(波長61.2nm)の発生頻度が約0.3%から約25%に向上し、最大出力20Jが得られた。また、検討中の水の窓領域でのシードFELについても報告する。
富樫 格*; 高橋 栄治*; 緑川 克美*; 青山 誠; 山川 考一; 佐藤 尭洋*; 岩崎 純史*; 大和田 成起*; 山内 薫*; 原 徹*; et al.
Proceedings of Ultrafast Optics IX (CD-ROM), 2 Pages, 2013/03
自由電子レーザー(FEL)は、共振器を使用しない自己増幅自発放射(SASE)方式を用いている。この方式では、自然放射光を種光としてレーザー発振・増幅するため、発振したレーザー光のスペクトルや時間波形がスパイク状構造になる欠点がある。この問題点を解決するために、短波長光源である高次高調波をFELにインジェクションし、スペクトルや時間波形にスパイク構造のないフルコヒーレント化された極端紫外領域のシード型自由電子レーザーの研究開発を進めている。高次高調波を発生させるドライブレーザーである高出力フェムト秒・チタンサファイアCPAレーザーシステムは、これまで原子力機構で培ったレーザー技術を設計に活かし、レーザーシステムの構築を行った。そして、このドライブレーザーをXeガス中に集光して得られる13次高調波(波長61.2nm)をシード光としてFELへインジェクションし、極端紫外領域でシード型FEL(波長61.2nm)の発振に世界で初めて成功した。高次高調波のシーディングによりSASE方式特有のスパイク構造がなくなり、スムーズなスペクトルが得られた。
石川 宏樹; 高松 操; 川原 啓孝; 三原 隆嗣; 栗坂 健一; 寺野 壽洋; 村上 隆典; 則次 明広; 井関 淳; 齊藤 隆一; et al.
JAEA-Technology 2009-004, 140 Pages, 2009/05
確率論的安全評価(PSA: Probabilistic Safety Assessment)は、原子炉施設の合理的安全規制・安全管理活動の一つであり、日本原子力研究開発機構では、高速増殖炉のPSA手順標準化のための技術基盤整備を目的に、定格出力運転時における内的事象に対するPSAにかかわる研究を実施している。当該研究の一環として、高速実験炉「常陽」について、レベル1PSAを試行し、出力運転時における内的事象に起因して炉心損傷に至る事故シーケンスの同定及び炉心損傷頻度を定量化した。本研究の結果、「常陽」における全炉心損傷頻度は5.010
/炉年であり、IAEA INSAG-12に記載された炉心損傷頻度の目標値である10
/炉年(既設炉に対して)及び10
/炉年(新設炉に対して)を下回っていることを確認した。
斎藤 公明; 齋藤 秀敏*; 国枝 悦夫*; 成田 雄一郎*; 明上山 温*; 藤崎 達也*; 川瀬 貴嗣*; 金子 勝太郎*; 尾嵜 真浩*; Deloar, H. M.*; et al.
情報処理, 48(10), p.1081 - 1088, 2007/10
科学技術振興機構の戦略的創造研究推進事業CRESTの一環として、外部の大学,医療機関,民間企業とチームを組織し、超並列シミュレーション計算を利用して放射線治療の高度化に貢献するための研究開発を行ってきた。この中で、現在広く行われているX線治療に関して、詳細人体モデルとモンテカルロ計算を利用して高精度線量を短時間に行い、ネットワークを介して医療現場を支援するシステムを開発してきた。さらに、これからの治療として期待される陽子線治療に関して、レーザーにより発生する陽子線を利用して小型で安価な陽子線治療装置を開発するための基礎的な研究を行ってきた。平成14年に開始した本プロジェクトはそれぞれのサブテーマについて成果を挙げ、平成19年度に終了する予定である。これらのプロジェクト研究の全容についてまとめて紹介する。
Zegers, R. G. T.*; Abend, H.*; 秋宗 秀俊*; Van den Berg, A. M.*; 藤村 寿子*; 藤田 浩彦*; 藤田 佳孝*; 藤原 守; Gals, S.*; 原 圭吾*; et al.
Nuclear Physics A, 731, p.121 - 128, 2004/02
被引用回数:11 パーセンタイル:57.55(Physics, Nuclear)Biのアイソベクトル型スピン反転巨大単極子共鳴が
Pb(
He,
)反応を用いて励起され、そこから陽子崩壊が測定された。60
5%の和則を尽す、単極子巨大共鳴が測定された。共鳴の中心エネルギーは37MeVであり、その中は14Mevであった。陽子崩壊分岐比は52
12%であり、残留状態として
Pbの深部空孔状態に陽子崩壊が起こっていることがわかった。
原 圭吾*; 足立 猛*; 秋宗 秀俊*; 大東 出*; 藤村 寿子*; 藤田 佳孝*; 藤原 守; 伏見 賢一*; 原 かおる*; Harakeh, M. N.*; et al.
Physical Review C, 68(6), p.064612_1 - 064612_9, 2003/12
被引用回数:11 パーセンタイル:58.76(Physics, Nuclear)Cuのガモウ・テラー準位が
Ni(
He,t+p)と
Ni(
He,t+
)同時計測実験で研究された。アイソスピンT=1とT=2の1
準位(E
6
12MeV)が
Ni(
He,t)反応で強く励起された。磁気スペクトロメーターを用いて測定されたトリトンと半導体検出器で測定した陽子崩壊との同時計測が行われた。この実験で、世界初の
N(
He,t+
)実験が行われ、陽子崩壊と
線崩壊強度を用いてガモウ・テラー共鳴の微視構造が議論された。
Zegers, R. G. T.*; 住浜 水季*; Ahn, D. S.*; Ahn, J. K.*; 秋宗 秀俊*; 浅野 芳裕; Chang, W. C.*; Dat, S.*; 江尻 宏泰*; 藤村 寿子*; et al.
Physical Review Letters, 91(9), p.092001_1 - 092001_4, 2003/08
被引用回数:128 パーセンタイル:95.08(Physics, Multidisciplinary)=1.5-2.4GeVで
(
,
)
,
(
,
)
反応に対するビーム偏極非対称が初めて測定された。この結果は未決定のハドロン共鳴や反応機構解明に用いられる。
中野 貴志*; Ahn, D. S.*; Ahn, J. K.*; 秋宗 秀俊*; 浅野 芳裕; Chang, W. C.*; 伊達 伸*; 江尻 宏泰*; 藤村 寿子*; 藤原 守; et al.
Physical Review Letters, 91(1), p.012002_1 - 012002_4, 2003/07
被引用回数:1001 パーセンタイル:99.88(Physics, Multidisciplinary)と
の両粒子を前方で測定することにより、
Cを標的にした
n
n光反応を研究した。1.54GeV/C
に25MeV/C
以下の幅の鋭いバリオン共鳴ピークを観測した。この共鳴ピークのストレンジネス(
)は+1であった。この状態は5つのクォーク(
)が
と中性子に崩壊した状態であると解釈される。
Zegers, R. G. T.; Abend, H.*; 秋宗 秀俊*; Van den Berg, A. M.*; 藤村 寿子*; 藤田 浩彦*; 藤田 佳孝*; 藤原 守; Gals, S.*; 原 圭吾*; et al.
Physical Review Letters, 90(20), p.202501_1 - 202501_4, 2003/05
被引用回数:49 パーセンタイル:85.39(Physics, Multidisciplinary)410MeVでのPb(
He,
)反応を用いてアイソベクトル型巨大単極子共鳴の励起と崩壊モードを研究した。
Biのこの共鳴は60
5%の和則を尽し、29MeV
51MeVに存在することが初めてわかった。共鳴の中心エネルギーは37
1MeVで、その幅は14
3MeVと決定した。陽子崩壊の分岐比は52
12%であった。
川畑 貴裕*; 石川 貴嗣*; 伊藤 正俊*; 中村 正信*; 坂口 治隆*; 竹田 浩之*; 瀧 伴子*; 内田 誠*; 安田 裕介*; 與曽井 優*; et al.
Physical Review C, 65(6), p.064316_1 - 064316_12, 2002/06
被引用回数:18 パーセンタイル:67.82(Physics, Nuclear)392MeVでのO(
)反応における反応断面積と偏極観測量が散乱角0°から14°までの角度で測定された。
O原子核の離散準位と共鳴準位へのスピン反転,スピン非反転強度がモデルに依存しない形で得られた。励起エネルギー19~27MeVの領域の巨大共鳴が主に角運動量移行L=1で励起されていることがわかった。
S=1,
L=1をもつスピン双極子遷移の励起強度が求められた。その強度は理論計算と比較された。実験結果は原子核の殻模型から計算された波動関数を用いたDWIA核反応計算で説明されることがわかった。
秋宗 秀俊*; 藤村 寿子*; 藤原 守; 原 圭吾*; 石川 貴嗣*; 川畑 貴裕*; 宇都宮 弘章*; 山県 民穂*; 山崎 かおる*; 與曽井 優*
Physical Review C, 64(4), p.041305_1 - 041305_4, 2001/10
被引用回数:20 パーセンタイル:74.31(Physics, Nuclear)450MeV Heビームを用いて
Be(
He, t)反応断面積が測定され、3.8MeV,1.8.MeVの励起準位が
B核で存在する証拠が提示された。
石川 貴嗣*; 秋宗 秀俊*; 大東 出*; 藤村 寿子*; 藤田 佳孝*; 藤原 守; 畑中 吉治*; 細野 和彦*; 井原 史智*; 伊藤 正俊*; et al.
Nuclear Physics A, 187(1-2), p.58c - 63c, 2001/04
Niの励起エネルギー8~33MeVでの巨大共鳴を(p, p')反応で研究した。0
で観測し、幅のひろいピークを観測した。スピン反転、スピン非反転の状態を区別することが偏極ビームでの偏極観測量を測定することで可能となった。測定結果から単極子巨大共鳴の励起強度を求めた。励起エネルギー17.6MeVで巾3.9MeVの単極子共鳴は70~90%のE
和則にあることがわかった。
伊藤 正俊*; 坂口 治隆*; 石川 貴嗣*; 川畑 貴裕*; 村上 哲也*; 竹田 浩之*; 瀧 伴子*; 塚原 直彦*; 内田 誠*; 安田 裕介*; et al.
Nuclear Physics A, 687(1-2), p.52c - 57c, 2001/04
400MeV粒子非弾性散乱を超前方で測定した。ターゲットは
Sm,
Sm,
Sm,
Sm,
Smを用いた。巨大単極子共鳴を観測した。15MeVの励起エネルギーに現れるピークは2成分から構成されることがわかった。巨大単極子共鳴の巾については
Smでは
Smのものについて1.7倍程度大きくなっていることがわかった。
川畑 貴裕*; 秋宗 秀俊*; 藤村 寿子*; 藤田 浩彦*; 藤田 佳孝*; 藤原 守; 原 圭吾*; 畑中 吉治*; 細野 和彦*; 石川 貴嗣*; et al.
Nuclear Instruments and Methods in Physics Research A, 459(1-2), p.171 - 176, 2001/02
被引用回数:17 パーセンタイル:75.57(Instruments & Instrumentation)「まど」なとの氷ターゲットの作成法を記述している。29.7mg/cmの氷ターゲットが液体チッソ温度にまで冷まされて磁気スペクトロメータで使用された。
O (p,p')反応が陽子エネルギー392MeVでこのターゲットを用いて測定された。
藤原 守; 秋宗 秀俊*; Van den Berg, A. M.*; Cribier, M.*; 大東 出*; 江尻 宏泰*; 藤村 寿子*; 藤田 佳孝*; Goodman, C. D.*; 原 圭吾*; et al.
Physical Review Letters, 85(21), p.4442 - 4445, 2000/11
被引用回数:24 パーセンタイル:74.42(Physics, Multidisciplinary)Yb
Luのガモフ・テラー遷移が 450MeV, 0
の(
He,t)反応で測定された。
Ybに対しては二つの1
準位が観測され、それぞれニュートリノ吸収に対して301keVと445keVのしきい値を与える。観測から得られた結果から、Ybを含んだニュートリノ検出器は太陽ニュートリノの観測に適していることがわかった。
松原 伸一*; 富樫 格*; 高橋 栄治*; 緑川 克美*; 青山 誠; 山川 考一; 佐藤 尭洋*; 岩崎 純史*; 大和田 成起*; 山内 薫*; et al.
no journal, ,
自由電子レーザー(FEL)は、共振器を使用しない自己増幅自発放射(SASE)方式を用いている。この方式では、自然放射光を種光としてレーザー発振・増幅するため、発振したレーザー光のスペクトルや時間波形がスパイク状構造になる欠点がある。この問題点を解決するために、短波長光源である高次高調波をFELにインジェクションし、スペクトルや時間波形にスパイク構造のないフルコヒーレント化された極端紫外領域(波長61.2nm)のシードFEL光の発生に成功した。しかしながら、外部からのコヒーレント光をシード光として用いる場合、電子バンチとシード光のタイミングドリフトにより、シードFEL光の出力ゆらぎが大きくなり、発生頻度も減少する問題がある。この問題点を解決するために、電気光学(Electro-Optic: EO)効果を利用したタイミングモニターを開発し、FEL装置の診断セクションに導入した。これにより、シードFEL光(波長61.2nm)の発生頻度が約0.3%から約25%に向上し、最大出力20Jが得られた。この結果について発表する。
冨澤 宏光*; 原 徹*; 石川 哲也*; 小川 奏*; 田中 均*; 田中 隆次*; 富樫 格*; 渡川 和晃*; 矢橋 牧名*; 青山 誠; et al.
no journal, ,
自由電子レーザー(FEL)は、共振器を使用しない自己増幅自発放射(SASE)方式を用いている。この方式では、自然放射光を種光としてレーザー発振・増幅するため、発振したレーザー光のスペクトルや時間波形がスパイク状構造になる欠点がある。この問題点を解決するために、短波長光源である高次高調波をFELにインジェクションし、スペクトルや時間波形にスパイク構造のないフルコヒーレント化された極端紫外領域(波長61.2nm)のシードFEL光の発生に成功した。しかしながら、外部からのコヒーレント光をシード光として用いる場合、電子バンチとシード光のタイミングドリフトにより、シードFEL光の出力ゆらぎが大きくなり、発生頻度も減少する問題がある。この問題点を解決するために、電気光学(Electro-Optic: EO)効果を利用したタイミングモニターを開発し、FEL装置の診断セクションに導入した。これにより、シードFEL光(波長61.2nm)の発生頻度が約0.3%から約25%に向上し、最大出力20Jが得られた。この結果について発表する。