Refine your search:     
Report No.
 - 
Search Results: Records 1-10 displayed on this page of 10
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Application of virtual tour for online training safeguards exercises

Sekine, Megumi; Sukegawa, Hidetoshi; Ishikuro, Yasuhiro; Oyama, Koji; Obata, Takashi; Hayashi, Kazuhiko; Inoue, Naoko

Proceedings of INMM & ESARDA Joint Virtual Annual Meeting (Internet), 10 Pages, 2021/08

The Integrated Support Center for Nuclear Nonproliferation and Nuclear Security (ISCN) of the Japan Atomic Energy Agency (JAEA) developed the virtual tour of a reference nuclear facility. The developed virtual tour was applied to the Design Information Questionnaire (DIQ) workshop exercise for the online SSAC course held in November 2020 in connection with the IAEA safeguards-related regional training course. Also, it was applied to the Complementary Access (CA) exercise for the online workshop of the Nuclear Security and Safeguards Project under the Forum for Nuclear Cooperation in Asia (FNCA), held in February 2021. The workshop exercises have been implemented for in-person format however due to COVID-19 pandemic, a virtual tour was applied. The virtual tour was found to be a strong tool not only for online training as an alternative for a facility tour, but also considered to be more advantageous even for the in-person training. The developed virtual tour of a reference nuclear facility, going to shut down, can find potentially varied applications. The paper describes how to create a virtual tour of a reference research reactor facility for the DIQ and CA exercises respectively which have different learning objectives. It emphasizes how the features of the reference facility were captured and the challenges encountered to convey to the training participants the importance of providing the required design information while not being physically present at the facility. It also show the advantage of using the same virtual tour to describe the safeguards-related verification activities of a complementary access. Virtual tours can be applied to a variety of training.

Journal Articles

Outline and implementation status of decommissioning plan of JRR-4

Ishikuro, Yasuhiro; Nemoto, Tsutomu; Oyama, Koji

Dekomisshoningu Giho, (60), p.8 - 16, 2019/09

JRR-4 had been shifted to decommissioning phase in December 2017 after we received the approval of the decommissioning plan of JRR-4 on June 2017 and the approval of the change of the safety regulations related to it. Decommissioning works are divided two phases and proceeded according to its plan. In the first phase, we perform reactor shutdown, fuel removal and maintenance management, and in the second phase, the dismantling works. JRR-4 was initially installed for the purpose of shielding experiments of the nuclear ship Mutsu, reached its first criticality in 1965, and had been operated for about 45 years until Dec. 2010. However, in consideration of the expenses required for the new regulatory standards implemented after the Tokyo Electric Power Company's Fukushima Daiichi Nuclear Power Plant accident and aging degradation, the decommissioning of JRR-4 was determined according to the JAEA reform plan in Sep. 2013. This report describes the outline of the decommissioning plan of JRR-4 and the status of its implementation.

Journal Articles

Outline and implementation status of decommissioning plan of JRR-4

Ishikuro, Yasuhiro; Nemoto, Tsutomu; Yamada, Yusuke; Oyama, Koji

Nihon Hozen Gakkai Dai-15-Kai Gakujutsu Koenkai Yoshishu, p.501 - 505, 2018/07

After operating until December 2010, JRR-4 was under periodical self-inspection for the next operation. After that, it suffered from the Great East Japan Earthquake on March 11, 2011. But it recovered almost a year later. However, we determined to decommission JRR-4 in September 2013. After that, we received the approval of the decommissioning plan of JRR-4 on June 7, 2017. And we received the approval of the change of the safety regulations related to it. Subsequently JRR-4 was shifted to decommission phase in December 2017. This report describes the outline of the decommissioning plan of JRR-4 and the implementation status.

Journal Articles

Decommissioning plan of JRR-4

Ishikuro, Yasuhiro; Hirane, Nobuhiko; Kato, Tomoaki

Proceedings of European Research Reactor Conference 2018 (RRFM 2018) (Internet), 7 Pages, 2018/03

Japan Research Reactor No.4 (JRR-4) is a swimming pool type reactor moderated and cooled with light-water. The maximum thermal power of JRR-4 is 3,500kW. Since its initial criticality in January 1965, JRR-4 had been operated about 45 years until in December 2010.Subsequently, the Great East Japan Earthquake occurred on March 11, 2011. Although JRR-4 was no severe damage, we have determined to decommission JRR-4 in consideration of various things. After that, we have submitted the decommissioning plan of JRR-4 to the nuclear regulatory body and have received the approval of it on June 7, 2017. Consequently, JRR-4 has shifted to the phase1 of the decommissioning plan since December.15, 2017 after the approval of its the safety regulation.

Journal Articles

Decommissioning of JRR-4

Ishikuro, Yasuhiro; Wada, Shigeru

UTNL-R-0494, p.6_1 - 6_14, 2017/03

no abstracts in English

Journal Articles

Decommissioning plan of JRR-4

Ishikuro, Yasuhiro; Hirane, Nobuhiko; Kato, Tomoaki

Proceedings of 8th International Symposium on Materials Testing Reactors (ISMTR-8) (Internet), 5 Pages, 2015/10

Japan Research Reactor No.4 (JRR-4) is a swimming pool type reactor moderated and cooled with light-water. The maximum thermal power of JRR-4 is 3,500 kW. Since its initial criticality in January 1965, JRR-4 had been operated about 45 years until in December 2010. Subsequently, the Great East Japan Earthquake occurred on March 11, 2011. Although JRR-4 was no severe damage, we have determined to decommission JRR-4 in consideration of various things, and will submit the decommissioning plan of JRR-4 to the nuclear regulatory body in the near future.

JAEA Reports

Guidance of operation practice and nuclear physics experiments using JRR-4

Yokoo, Kenji; Horiguchi, Hironori; Yagi, Masahiro; Nagadomi, Hideki; Yamamoto, Kazuyoshi; Sasajima, Fumio; Oyama, Koji; Ishikuro, Yasuhiro; Sasaki, Tsutomu; Hirane, Nobuhiko; et al.

JAEA-Technology 2007-018, 104 Pages, 2007/03

JAEA-Technology-2007-018.pdf:5.92MB

Reactor operation training using JRR-4 (Japan Research Reactor No.4) was started in FY 1969, one of the curriculums of Nuclear Technology and Education Center (NuTEC). After that, the program was updated and carried out for reactor operation training, control rod calibration, and measurement of various kind of characteristics. JRR-4 has been contributed for nuclear engineer training that is over 1,700 trainees from bother domestic and foreign countries. JRR-4 can be used for experiment from zero power to 3500kW, and the trainees can make experience to operate the reactor from start up to shut down, not only zero-power experiments (critical approach, control rod calibration, reactivity measurement, etc.) but also other experiments under high power operation (xenon effect, temperature effects, reactor power calibration, etc.). This report is based on various kinds of guidance texts using for training, and collected for operation and experiments for reactor physics.

JAEA Reports

Core characteristics of JRR-4 using low-enriched-uranium-silicied fuel; Initial core and burn-up core

Ishikuro, Yasuhiro

JAEA-Technology 2007-017, 91 Pages, 2007/03

JAEA-Technology-2007-017.pdf:4.93MB

JRR-4, a light-water-moderated and cooled, swimming pool type research reactor using high-enriched uranium plate-type fuels had been operated from 1965 to 1996. In order to convert to low-enriched -uranium-silicied fuels, modification work had been carried out for 2 years, from 1996 to 1998. After the modification, the first criticality of low-enriched-uranium-silicied core was achieved on 14th July 1998, and the operation has been carried out since 6th October 1998. In this report, the core characteristics have been analyzed with SRAC code system. SRAC was verified compared with the experiment value. The core characteristics were analyzed such as excess reactivity, control rod worth, neutron flux distribution, the peaking factor of initial core, as well as excess reactivity of burn -up core. As a result, in the initial core, against the experiment value, excess reactivity was an error of about 1%$$mathit{Delta}$$k/k, the peaking factor was an error of about 1%, control rod worth was an error of about 14%. SRAC code was confirmed that it was able to evaluate with accuracy in low-enriched-uranium-silicied fuel.

JAEA Reports

Experiments of JRR-4 low-enriched-uranium-silicied fuel core

Hirane, Nobuhiko; Ishikuro, Yasuhiro; Nagadomi, Hideki; Yokoo, Kenji; Horiguchi, Hironori; Nemoto, Takumi; Yamamoto, Kazuyoshi; Yagi, Masahiro; Arai, Nobuyoshi; Watanabe, Shukichi; et al.

JAEA-Technology 2006-028, 115 Pages, 2006/03

JAEA-Technology-2006-028.pdf:7.96MB

JRR-4, a light-water-moderated and cooled, swimming pool type research reactor using high-enriched uranium plate-type fuels had been operated from 1965 to 1996. In order to convert to low-enriched-uranium-silicied fuels, modification work had been carried out for 2 years, from 1996 to 1998. After the modification, start-up experiments were carried out to obtain characteristics of the low-enriched-uranium-silicied fuel core. The measured excess reactivity, reactor shutdown margin and the maximum reactivity addition rate satisfied the nuclear limitation of the safety report for licensing. It was confirmed that conversion to low-enriched-uranium-silicied fuels was carried out properly. Besides, the necessary data for reactor operation were obtained, such as nuclear, thermal hydraulic and reactor control characteristics. This report describes the results of start-up experiments and burnup experiments. The first criticality of low-enriched-uranium-silicied core was achieved on 14th July 1998, and the operation for joint-use has been carried out since 6th October 1998.

JAEA Reports

Management techniques of the JRR-4 heat exchanger

Horiguchi, Hironori; Oyama, Koji; Ishikuro, Yasuhiro; Hirane, Nobuhiko; Ito, Kazuhiro; Kameyama, Iwao

JAERI-Tech 2005-001, 38 Pages, 2005/02

JAERI-Tech-2005-001.pdf:2.79MB

After JRR-4 heat exchanger was renewed in made of stainless steel from carbon steel, it was examined how to manage the heat exchanger. The main subject is the cleaning technology of the heat exchanger. The recovery of old heat exchanger cooling performance has been by only chemical cleaning. Now we use chemical and dry cleaning as a new technique. It helps prevent of corrosions of secondary pipes and reduce of management costs. This report describes the performance management and cleaning technology of the JRR-4 heat exchanger and the management of the JRR-4 coolant.

10 (Records 1-10 displayed on this page)
  • 1