Refine your search:     
Report No.
 - 
Search Results: Records 1-8 displayed on this page of 8
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Introduce of friction model into fuel pin bundle deformation analysis code "BAMBOO"

Uwaba, Tomoyuki; Ito, Masahiro*; Ishitani, Ikuo*

JAEA-Technology 2023-006, 36 Pages, 2023/05

JAEA-Technology-2023-006.pdf:3.45MB

The BAMBOO code developed by the Japan Atomic Energy Agency is a computer code to analyze fuel pin bundle deformation in a fast reactor wire-spaced type fuel pin bundle subassembly. In this study we developed an analysis model to consider friction at the contact points between adjacent fuel pins, and at these between outermost fuel pins and a duct that are due to bundle-duct interaction. This model deals with friction forces at contact points in the contact and separation analysis of the code, and employs a convergent calculation where contact forces are gradually determined to avoid numerical instability when the friction occurs. Analyses of BAMBOO with the model showed very slight effects on the onset of contact between outer most pins and a duct, and on directions of pin displacements, within the range of practical friction coefficients.

Journal Articles

Development of an integrated computer code system for analyzing irradiation behaviors of a fast reactor fuel

Uwaba, Tomoyuki; Nemoto, Junichi*; Ito, Masahiro*; Ishitani, Ikuo*; Doda, Norihiro; Tanaka, Masaaki; Otsuka, Satoshi

Nuclear Technology, 207(8), p.1280 - 1289, 2021/08

 Times Cited Count:3 Percentile:35.51(Nuclear Science & Technology)

Computer codes for irradiation behavior analysis of a fuel pin and a fuel pin bundle and for coolant thermal hydraulics analysis were coupled into an integrated code system. In the system, each code provides data required by other codes and the analyzed results are shared among them. The system allows for the synthesizing of analyses of thermal, chemical and mechanical behaviors in a fuel subassembly under irradiation. A test analysis was made for a fuel subassembly containing a mixed oxide fuel pin bundle irradiated in a fast reactor. The results of the analysis were presented with transverse cross-sectional images of the fuel subassembly and three-dimensional images of a fuel pin and fuel pin bundle models. For detailed evaluation, various irradiation behaviors of all fuel pins in the subassembly were analyzed and correlated with irradiation conditions.

Journal Articles

Computer code analysis of irradiation performance of axially heterogeneous mixed oxide fuel elements attaining high burnup in a fast reactor

Uwaba, Tomoyuki; Yokoyama, Keisuke; Nemoto, Junichi*; Ishitani, Ikuo*; Ito, Masahiro*; Pelletier, M.*

Nuclear Engineering and Design, 359, p.110448_1 - 110448_7, 2020/04

 Times Cited Count:1 Percentile:12.16(Nuclear Science & Technology)

Coupled computer code analyses of irradiation performance of axially heterogeneous mixed oxide (MOX) fuel elements with high burnup in a fast reactor were conducted. Post-irradiation experiments revealed local concentration of Cs near the interfaces between MOX fuel and blanket columns including the internal blanket of the fuel elements as well as an increase in their cladding diameters. The analyses indicated that the local Cs concentration occurred as a result of Cs axial migration from the MOX fuels toward the blanket pellets near the interfaces. Swelling of the blanket pellets induced by the formation of low-density Cs-U-O compound was not sufficient to cause pellet-to-cladding mechanical interaction (PCMI). The PCMI analyzed in the MOX fuel column regions was insignificant, and the cladding diameter increases were caused mainly by void swelling in cladding and irradiation creep due to fission gas pressure.

Journal Articles

Coupled computer code study on irradiation performance of a fast reactor mixed oxide fuel element with an emphasis on the fission product cesium behavior

Uwaba, Tomoyuki; Nemoto, Junichi*; Ishitani, Ikuo*; Ito, Masahiro*

Nuclear Engineering and Design, 331, p.186 - 193, 2018/05

 Times Cited Count:4 Percentile:38.58(Nuclear Science & Technology)

A computer code for the analysis of the overall irradiation performance of a fast reactor mixed-oxide (MOX) fuel element was coupled with a specialized code for the analysis of fission product cesium behaviors in a MOX fuel element. The coupled code system allowed for the analysis of the radial and axial Cs migrations, the generation of Cs chemical compounds and fuel swelling due to Cs-fuel-reactions in association with the thermal and mechanical behaviors of the fuel element. The coupled code analysis was applied to the irradiation performance of a fast reactor MOX fuel element attaining high burnup for discussion on the axial distribution of Cs, fuel-to-cladding mechanical interaction owing to the Cs-fuel-reactions by comparing the calculated results with post irradiation examinations.

Journal Articles

Development of a mixed oxide fuel pin performance analysis code "CEDAR"; Models and analyses of fuel pin irradiation behavior

Uwaba, Tomoyuki; Mizuno, Tomoyasu; Nemoto, Junichi*; Ishitani, Ikuo*; Ito, Masahiro*

Nuclear Engineering and Design, 280, p.27 - 36, 2014/12

 Times Cited Count:11 Percentile:64.59(Nuclear Science & Technology)

A deterministic computer code CEDAR has been developed to analyze irradiation behaviors of a mixed-oxide fuel pellet pin in a FBR. The FEM was incorporated into the mechanical calculation part of the code for properly analyzing stress-strain status in the fuel pellet and cladding, and mechanical interaction between the fuel pellet and cladding. The code features mechanistic analyses of irradiation behaviors of a fuel pin by integrating a lot of models to analyze major irradiation phenomena, thus expressing actual fuel pin irradiation behaviors. Analysis capabilities of the code were validated by calculations of fuel pellet temperatures, fractional fission gas releases of fuel pins and fuel pin cladding diametral strain profiles. The mechanisms of the fuel pin irradiation behaviors such as redistribution of Americium, PCMI and JOG formation were interpreted from the code analyses for the actual irradiation test fuel pins.

Journal Articles

The Summary report on engineering design activities in the International Thermonuclear Experimental Reactor (ITER) project

Mori, Masahiro; Shoji, Teruaki; Araki, Masanori; Saito, Keiji*; Senda, Ikuo; Omori, Junji*; Sato, Shinichi*; Inoue, Takashi; Ono, Isamu*; Kataoka, Takahiro*; et al.

Nihon Genshiryoku Gakkai-Shi, 44(1), p.16 - 89, 2002/01

no abstracts in English

Journal Articles

Fast ion confinement in JT-60U and implications for ITER

Tobita, Kenji; Hamamatsu, Kiyotaka; Harano, Hideki*; Nishitani, Takeo; Kusama, Yoshinori; Kimura, Haruyuki; Takizuka, Tomonori; Fujieda, Hirobumi*; Shoji, Teruaki; Senda, Ikuo*; et al.

Proc. of 5th IAEA Technical Committee Meeting on Alpha Particles in Fusion Research, p.45 - 48, 1997/00

no abstracts in English

Oral presentation

Irradiation behavior of fast reactor fuel pins, 1; Evaluation of cesium behavior by coupling computer codes

Uwaba, Tomoyuki; Yokoyama, Keisuke; Ikusawa, Yoshihisa; Nemoto, Junichi*; Ishitani, Ikuo*; Ito, Masahiro*

no journal, , 

A computer code for the analysis of the overall irradiation performance of a fast reactor mixed-oxide (MOX) fuel element was coupled with a specialized code for the analysis of fission product cesium behaviors in a MOX fuel element. The coupled code system allowed for the analysis of the radial and axial Cs migrations, the generation of Cs chemical compounds and fuel swelling due to Cs-fuel-reactions in association with the thermal and mechanical behaviors of the fuel element. The coupled code analysis was applied to the irradiation performance of a fast reactor MOX fuel element attaining high burnup, showing consistency with post irradiation examinations.

8 (Records 1-8 displayed on this page)
  • 1