Refine your search:     
Report No.
 - 
Search Results: Records 1-7 displayed on this page of 7
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Changes in molecular conformation and electronic structure of DNA under $$^{12}$$C ions based on first-principles calculations

Sekikawa, Takuya; Matsuya, Yusuke; Hwang, B.*; Ishizaka, Masato*; Kawai, Hiroyuki*; Ono, Yoshiaki*; Sato, Tatsuhiko; Kai, Takeshi

Nuclear Instruments and Methods in Physics Research B, 548, p.165231_1 - 165231_6, 2024/03

 Times Cited Count:0 Percentile:0.19(Instruments & Instrumentation)

One of the main causes of radiation effects on the human body is thought to be damage to DNA, which carries genetic information. However, it is not fully understood what kind of molecular structural changes DNA undergoes upon radiation damage. Since it has been reported that various types of DNA damage are formed when DNA is irradiated, our group has investigated the relationship between DNA damage and various patterns of radiation-induced ionization induced by radiation. Although we have so far analyzed DNA damage in a simple system using a rigid body model of DNA, more detailed calculations are required to analyze the molecular structural changes in DNA, which are considered to be important in considering the effects on the human body. In this study, we attempted to clarify the molecular conformational changes of DNA using OpenMX, a first-principles calculation software that can discuss electronic states based on molecular structures. Specifically, we calculated the most stable structure, band dispersion, and wave function of DNA under the assumption that one and two electrons are ionized by various radiation. In the presentation, we will discuss the relationship between the energy dependence of each incident radiation type and the molecular conformational change of DNA. In addition, the radiation-induced changes in the basic physical properties of DNA (corresponding to the initial stage of DNA damage) will be discussed from the viewpoints of both radiation physics and solid state physics.

Journal Articles

Competing spin modulations in the magnetically frustrated semimetal EuCuSb

Takahashi, Hidefumi*; Aono, Kai*; Nambu, Yusuke*; Kiyanagi, Ryoji; Nomoto, Takuya*; Sakano, Masato*; Ishizaka, Kyoko*; Arita, Ryotaro*; Ishiwata, Shintaro*

Physical Review B, 102(17), p.174425_1 - 174425_6, 2020/11

 Times Cited Count:9 Percentile:52.47(Materials Science, Multidisciplinary)

The competing magnetic ground states of the itinerant magnet EuCuSb, which has a hexagonal layered structure, were studied via magnetization, resistivity, and neutron-diffraction measurements on single-crystal samples. EuCuSb has a three-dimensional semimetallic band structure as confirmed by band calculation and angle-resolved photoelectron spectroscopy, consistent with the nearly isotropic metallic conductivity in the paramagnetic state. However, below the antiferromagnetic transition temperature of $$T$$$$_{rm N1}$$ (8.5 K), the resistivity, especially along the hexagonal axis, increases significantly. This implies the emergence of anisotropic magnetic ordering coupled to the conducting electrons. Neutron-diffraction measurements show that the Eu spins, which order ferromagnetically within each layer, are collinearly modulated (up-up-down-down) along the hexagonal axis below $$T$$$$_{rm N1}$$, followed by the partial emergence of helical spin modulation below $$T$$$$_{rm N2}$$ (6 K). Based on the observation of anomalous magnetoresistance with hysteretic behavior, we discuss the competing nature of the ground state inherent in a frustrated Heisenberg-like spin system with a centrosymmetric structure.

Journal Articles

Intrinsic 2D ferromagnetism in V$$_{5}$$Se$$_{8}$$ epitaxial thin films

Nakano, Masaki*; Wang, Y.*; Yoshida, Satoshi*; Matsuoka, Hideki*; Majima, Yuki*; Ikeda, Keisuke*; Hirata, Yasuyuki*; Takeda, Yukiharu; Wadachi, Hiroki*; Kohama, Yoshimitsu*; et al.

Nano Letters, 19(12), p.8806 - 8810, 2019/12

 Times Cited Count:57 Percentile:92.23(Chemistry, Multidisciplinary)

Oral presentation

First-principles calculations of molecular structure and electronic state changes in DNA induced by radiation-induced holes

Sekikawa, Takuya; Hwang, B.*; Ishizaka, Masato*; Matsuya, Yusuke*; Kawai, Hiroyuki*; Ono, Yoshiaki*; Sato, Tatsuhiko; Kai, Takeshi

no journal, , 

Deoxyribonucleic acid (DNA) carries the genetic information of living organisms through various combinations of guanine, cytosine, adenine, and thymine, and radiation biological effects are mainly caused by damage to DNA. In this study, in order to theoretically investigate the transient molecular conformational changes that occur before DNA damage takes hold, we analyzed the behavior of the sites responsible for the conformational changes and chemical reactions by targeting the DNA that produced the holes using the first-principles calculation software OpenMX. As a result, it was confirmed that the holes reproduce the event of trapping in the guanine molecule of DNA, which reproduces the experimental results, and it was also newly found that the DNA sugar chain shows intense molecular fluctuation. The results of this study are expected to contribute to the elucidation of the first-phase process of radiation biological effects.

Oral presentation

First-principles calculations of DNA irradiated with a proton and a carbon ion beam

Sekikawa, Takuya; Hwang, B.*; Ishizaka, Masato*; Matsuya, Yusuke; Kawai, Hiroyuki*; Ono, Yoshiaki*; Sato, Tatsuhiko; Kai, Takeshi

no journal, , 

Deoxyribonucleic acid (DNA) carries the genetic information of living organisms through various combinations of guanine, cytosine, adenine, and thymine, and radiation biological effects are mainly caused by damage to this DNA. In this study, we theoretically investigated the transient molecular conformational changes that occur before DNA damage takes hold, using the heavy particle and ion transport code PHITS and the first-principles calculation software OpenMX. As a result, it was clarified that the chemical reaction site of DNA shifts from guanine and cytosine, which carry genetic information, to the sugar chain, which supports the entire DNA, and that the new DNA sugar chain shows intense molecular fluctuations. The results of this study will contribute to the elucidation of the initial process of radiation biological effects.

Oral presentation

Computer simulation of the first stage of radiation biological effects; Effects of radiation damage on the electronic state of DNA

Sekikawa, Takuya; Matsuya, Yusuke; Hwang, B.*; Ishizaka, Masato*; Kawai, Hiroyuki*; Ono, Yoshiaki*; Sato, Tatsuhiko; Kai, Takeshi

no journal, , 

Deoxyribonucleic acid (DNA) carries the genetic information of living organisms through various combinations of guanine, cytosine, adenine, and thymine, and biological effects of radiation are mainly caused by damage to this DNA. In this study, in order to theoretically investigate the transient changes in molecular structure until DNA damage is established, the number of holes produced by radiation-induced carbon beams was calculated using the Particle and Heavy Ion Transport code System (PHITS), and the number of holes produced by the first The first principle calculation software OpenMX was used to calculate the sites responsible for conformational changes and chemical reactions by targeting the DNA that produced the holes. As a result, the experimental result that a small number of holes are trapped in the guanine molecule of DNA is reproduced, while a large number of holes are trapped in the hybrid orbital of the sugar chain and guanine molecule of DNA. The results of this study are expected to contribute to the elucidation of the initial processes of radiation biological effects.

Oral presentation

First-principles calculations of molecular structure and electronic state changes in DNA induced by radiation-induced holes, 2

Sekikawa, Takuya; Hwang, B.*; Ishizaka, Masato*; Matsuya, Yusuke*; Kawai, Hiroyuki*; Ono, Yoshiaki*; Sato, Tatsuhiko; Kai, Takeshi

no journal, , 

Deoxyribonucleic acid (DNA) carries the genetic information of living organisms through various combinations of guanine, cytosine, adenine, and thymine, and radiation biological effects are mainly caused by damage to this DNA. In this study, in order to theoretically investigate the transient molecular conformational changes until DNA damage is established, we used the first-principles calculation software OpenMX to perform calculations targeting DNA that produces 1$$sim$$20 holes, where the holes are trapped in the guanine bases of the DNA when there are few holes and the DNA with many holes In the case of DNA, it was found that the main strand mainly contributes to the chemical reaction. The results of this study will contribute to the elucidation of the first-phase processes of radiation biological effects.

7 (Records 1-7 displayed on this page)
  • 1