Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 45

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Strain-induced crystallization and phase separation used for fabricating a tough and stiff slide-ring solid polymer electrolyte

Hashimoto, Kei*; Shiwaku, Toru*; Aoki, Hiroyuki; Yokoyama, Hideaki*; Mayumi, Koichi*; Ito, Kozo*

Science Advances (Internet), 9(47), p.eadi8505_1 - eadi8505_8, 2023/11

 Times Cited Count:40 Percentile:97.39(Multidisciplinary Sciences)

Journal Articles

Evaluation of bending strain in Nb$$_{3}$$Sn strands of CIC conductor using neutron diffraction

Hemmi, Tsutomu*; Harjo, S.; Kajitani, Hideki*; Suwa, Tomone*; Saito, Toru*; Aizawa, Kazuya; Osamura, Kozo*; Koizumi, Norikiyo*

IEEE Transactions on Applied Superconductivity, 27(4), p.4200905_1 - 4200905_5, 2017/06

 Times Cited Count:2 Percentile:13.05(Engineering, Electrical & Electronic)

Journal Articles

Current status of R&D activities and future plan and role of JAEA's two generic URLs

Koide, Kaoru; Osawa, Hideaki; Ito, Hiroaki; Tanai, Kenji; Semba, Takeshi; Naito, Morimasa; Sugihara, Kozo; Miyamoto, Yoichi

Annual Waste Management Symposium (WM 2015), Vol.5, p.3631 - 3645, 2015/00

JAEA has promoted R&D on HLW geological disposal technology. JAEA launched the Mizunami and the Horonobe URL Projects to cover the diversity of geological environments in Japan. The Mizunami URL Project is a geoscientific research project in the crystalline rock environment. The Horonobe URL Project consists of geoscientific studies and R&D on geological disposal technology in the sedimentary rock environment. Both URL projects have been planned to proceed in three overlapping phases, Surface-based investigation Phase, Construction Phase and Operation Phase. Currently, the construction of research galleries in both of the Mizunami and the Horonobe URLs has been completed to 500 m and 350 m depths, respectively. JAEA will promote R&D activities in Phase III including study of the long-term evolution of the geological environment, and contribute to international cooperation, development of human resources and communication amongst stakeholders through both URL projects.

Journal Articles

Verification of the FBR fuel bundle-duct interaction analysis code BAMBOO by the out-of-pile bundle compression test with large diameter pins

Uwaba, Tomoyuki; Ito, Masahiro*; Nemoto, Junichi*; Ichikawa, Shoichi; Katsuyama, Kozo

Journal of Nuclear Materials, 452(1-3), p.552 - 556, 2014/09

 Times Cited Count:1 Percentile:8.20(Materials Science, Multidisciplinary)

The BAMBOO code was verified by results for the out-of-pile bundle compression test with large diameter pin bundle deformation under the bundle-duct interaction (BDI) condition. The pin diameters of were 8.5 mm and 10.4 mm, which are targeted as preliminary fuel pin diameters for the upgraded core of the prototype FBR and for demonstration and commercial FBRs studied in the FaCT project. In the bundle compression test, bundle cross-sectional views were obtained from X-ray computer tomography (CT)images and local parameters of bundle deformation were measured by CT image analyses. In the verification, calculation results of bundle deformation obtained by the BAMBOO code analyses were compared with the experimental results from the CT image analyses. The comparison showed that the BAMBOO code reasonably predicts deformation of large diameter pin bundles under the BDI condition by assuming that pin bowing and cladding oval distortion are the major deformation mechanisms.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2012

Hama, Katsuhiro; Mikake, Shinichiro; Nishio, Kazuhisa; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Sasao, Eiji; Hikima, Ryoichi*; Tanno, Takeo*; Sanada, Hiroyuki; Onoe, Hironori; et al.

JAEA-Review 2013-050, 114 Pages, 2014/02

JAEA-Review-2013-050.pdf:19.95MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in fiscal year 2012. This report presents the results of the investigations, construction and collaboration studies in fiscal year 2012, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.

Journal Articles

Residual strains in ITER conductors by neutron diffraction

Harjo, S.; Hemmi, Tsutomu; Abe, Jun; Gong, W.; Nunoya, Yoshihiko; Aizawa, Kazuya; Ito, Takayoshi*; Koizumi, Norikiyo; Machiya, Shutaro*; Osamura, Kozo*

Materials Science Forum, 777, p.84 - 91, 2014/02

 Times Cited Count:2 Percentile:70.74(Materials Science, Multidisciplinary)

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2011

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Sasao, Eiji; Hikima, Ryoichi; Tanno, Takeo; Sanada, Hiroyuki; et al.

JAEA-Review 2013-018, 169 Pages, 2013/09

JAEA-Review-2013-018.pdf:15.71MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II and the Phase III in 2011 fiscal year. This report shows the results of the investigation, construction and collaboration studies in fiscal year 2011, as a part of the Phase II and Phase III based on the MIU Master Plan updated in 2010.

JAEA Reports

Investigation on cause of malfunction of Wide Range Monitor (WRM) in High Temperature engineering Test Reactor (HTTR); Sample tests and destructive tests

Shinohara, Masanori; Motegi, Toshihiro; Saito, Kenji; Haga, Hiroyuki; Sasaki, Shinji; Katsuyama, Kozo; Takada, Kiyoshi*; Higashimura, Keisuke*; Fujii, Junichi*; Ukai, Takayuki*; et al.

JAEA-Technology 2012-032, 29 Pages, 2012/11

JAEA-Technology-2012-032.pdf:6.57MB

An event, in which one of WRMs were disabled to detect the neutron flux in the reactor core, occurred during the period of reactor shut down of HTTR in March, 2010. The actual life time of WRM was unexpectedly shorter than the past developed life time. Investigation of the cause of the outage of WRM toward the recovery of the life time up to the past developed life is one of the issues to develop the technology basis of HTGR. Then, two experimental investigations were carried out to reveal the cause of the malfunction by specifying the damaged part causing the event in the WRM. One is an experiment using a mock-up sample test which strength degradation on assembly accuracy and heat cycle to specify the damaged part in the WRM. The other is a destructive test in FMF to specify the damaged part in the WRM. This report summarized the results of the destructive test and the experimental investigation using the mock-up to reveal the cause of malfunction of WRM.

JAEA Reports

Investigation on cause of outage of Wide Range Monitor (WRM) in High Temperature engineering Test Reactor (HTTR); Post Irradiation Examination (PIE) toward investigation of the cause

Shinohara, Masanori; Motegi, Toshihiro; Saito, Kenji; Takada, Shoji; Ishimi, Akihiro; Katsuyama, Kozo

JAEA-Technology 2012-026, 21 Pages, 2012/08

JAEA-Technology-2012-026.pdf:2.31MB

An event, in which one of WRMs were disabled to detect the neutron flux in the reactor core, occurred during the period of reactor shut down of HTTR in March, 2010. The actual life time of WRM was unexpectedly shorter than the past developed life time. Investigation of the cause of the outage of WRM toward the recovery of the life time up to the past developed life is one of the issues to develop the technology basis of HTGR. Then, two experimental investigations were carried out to reveal the cause of the outage by specifying the damaged part causing the event in the WRM. The one is a post irradiation examination using the X-ray computed tomography scanner in Fuels Monitoring Facility (FMF) to specify the damaged part in the WRM. The other is an experiment using a mock-up simulating the WRM fabricated by the fabricator. This report summarized the results of the PIE and the experimental investigation using the mock-up to reveal the cause of outage of WRM.

JAEA Reports

Investigation on cause of outage of Wide Range Monitor (WRM) in High Temperature engineering Test Reactor (HTTR); Transport operation toward investigation for cause of outage

Shinohara, Masanori; Sawahata, Hiroaki; Kawamoto, Taiki; Motegi, Toshihiro; Saito, Kenji; Takada, Shoji; Yoshida, Naoaki; Isozaki, Ryosuke; Katsuyama, Kozo

JAEA-Technology 2012-025, 31 Pages, 2012/08

JAEA-Technology-2012-025.pdf:4.69MB

An event, in which one of WRMs were disabled to detect the neutron flux in the reactor core, occurred during the period of reactor shut down of HTTR in March, 2010. The actual life time of WRM was unexpectedly shorter than the past developed life time. Investigation of the cause of the outage of WRM toward the recovery of the life time up to the developed life is one of the issues to develop the technology basis of High Temperature Gas cooled Reactor (HTGR). Then, a post irradiation examination was planned to specify the damaged part causing the event in the WRM was also planned. For the investigation, the X-ray computed tomography scanner in Fuels Monitoring Facility (FMF). This report describes the preliminary investigation on the cause of outage of the WRM. The results of study for transportation method of the irradiated WRM from HTTR to FMF is also reported with the record to complete the transport operation.

JAEA Reports

Mizunami Underground Research Laboratory Project, Plan for fiscal year 2012

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Kuboshima, Koji; Takeuchi, Ryuji; Mizuno, Takashi; Sato, Toshinori; et al.

JAEA-Review 2012-028, 31 Pages, 2012/08

JAEA-Review-2012-028.pdf:3.86MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU project is planned in three overlapping phases; Surface-based Investigation Phase (Phase I), Construction Phase (Phase II) and Operation Phase (Phase III). Currently, the project is under the Construction Phase and the Operation Phase. This document introduces the research and development activities planned for 2012 fiscal year based on the MIU Master Plan updated in 2010, construction plan and research collaboration plan, etc.

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2010

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Ishibashi, Masayuki; Ueno, Takashi; Tokuyasu, Shingo; Daimaru, Shuji; Takeuchi, Ryuji; et al.

JAEA-Review 2012-020, 178 Pages, 2012/06

JAEA-Review-2012-020.pdf:33.16MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The MIU Project has been ongoing the Phase II. And Phase III started in 2010 fiscal year. This report shows the results of the investigation, construction and collaboration studies in fiscal year 2010, as a part of the Phase II based on the MIU Master Plan updated in 2002.

Journal Articles

A Possible overestimation of the effect of acetylation on lysin residues in KQ mutant analysis

Fujimoto, Hirofumi*; Higuchi, Mariko; Koike, Manabu*; Ode, Hirotaka*; Pinak, M.; Kotulic Bunta, J.*; Nemoto, Toshiyuki*; Sakudo, Takashi*; Honda, Naoko*; Maekawa, Hideaki*; et al.

Journal of Computational Chemistry, 33(3), p.239 - 246, 2012/01

 Times Cited Count:36 Percentile:66.77(Chemistry, Multidisciplinary)

Lysine acetylation is one of the most common protein post transcriptional modifications. The acetylation effects of lysine residues on Ku protein were examined herein applying several computer simulation techniques. Acetylation of the lysine residues did not reduce the affinity between Ku and its substrate, DNA, in spite of the fact that the substitution of lysine with glutamine (KQ mutant) reduced the affinity of Ku for DNA, or the substitution of lysine with arginine (KR mutant) did not reduce it, as previously reported in experimental studies. These results suggest that the effects of in vivo acetylation may be overestimated when the KQ mutant is employed in mimicry of the acetylated protein.

JAEA Reports

Mizunami Underground Research Laboratory Project, Plan for fiscal year 2011

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Takeuchi, Ryuji; Saegusa, Hiromitsu; Mizuno, Takashi; Sato, Toshinori; Ogata, Nobuhisa; et al.

JAEA-Review 2011-027, 30 Pages, 2011/08

JAEA-Review-2011-027.pdf:4.18MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). Geoscientific research and the MIU project is planned in three overlapping phases; Surface-based Investigation Phase (Phase1), Construction Phase (Phase2) and Operation Phase (Phase3). Currently, the project is under the Construction Phase, and the Operation Phase. This document introduces the research and development activities planned for 2011 fiscal year plan based on the MIU Master Plan updated in 2010, Investigation Plan, Construction Plan and Research Collaboration Plan, etc.

Journal Articles

Neutron diffraction measurements of internal strain in Nb$$_{3}$$Sn cable-in-conduit conductors

Hemmi, Tsutomu; Harjo, S.; Ito, Takayoshi; Matsui, Kunihiro; Nunoya, Yoshihiko; Koizumi, Norikiyo; Takahashi, Yoshikazu; Nakajima, Hideo; Aizawa, Kazuya; Suzuki, Hiroshi; et al.

IEEE Transactions on Applied Superconductivity, 21(3), p.2028 - 2031, 2011/06

 Times Cited Count:10 Percentile:49.10(Engineering, Electrical & Electronic)

Residual strain in conductors is caused by the difference in the coefficient of expansion between Nb$$_{3}$$Sn strands and the jacket over a temperature range of 5 - 923 K. The superconducting properties of strands vary significantly, depending on the strain. It is important to clarify the residual strain as part of the evaluation of superconducting performance. However, the residual strain of strands in the conductor has not been measured so far because of their complicated configuration and their location in a jacket. The engineering materials diffractometer "Takumi" in J-PARC can measure residual strain with a relative accuracy of around 0.02%, using neutron diffraction. In this study, the Takumi was applied to the measurement of residual strain in strands for the ITER TF conductor. Results indicate that the residual strain of strands in the conductor can be determined, thereby clarifying the mechanism of residual strain and its relationship to superconducting performance.

Journal Articles

Irradiation performance of fast reactor MOX fuel pins with ferritic/martensitic cladding irradiated to high burnups

Uwaba, Tomoyuki; Ito, Masahiro*; Mizuno, Tomoyasu; Katsuyama, Kozo; Makenas, B. J.*; Wootan, D. W.*; Carmack, J.*

Journal of Nuclear Materials, 412(3), p.294 - 300, 2011/05

 Times Cited Count:11 Percentile:62.16(Materials Science, Multidisciplinary)

The ACO-3 irradiation test, which attained extremely high burnups of about 232 GWd/t and resisted a high neutron fluence of about 39$$times$$10$$^{26}$$n/m$$^{2}$$ as one of the lead tests of the Core Demonstration Experiment in the Fast Flux Test Facility, demonstrated that the fuel pin cladding made of ferritic/martensitic HT-9 alloy had superior void swelling resistance. The measured diameter profiles of the irradiated ACO-3 fuel pins showed axially extensive incremental strain in the MOX fuel column region and localized incremental strain near the interfaces between the MOX fuel and upper blanket columns. These incremental strains were as low as 1.5% despite the extremely high level of the fast neutron fluence. Evaluation of the pin diametral strain indicated that the incremental strain in the MOX fuel column region was substantially due to cladding void swelling and irradiation creep caused by internal fission gas pressure, while the localized strain near the MOX fuel/upper blanket interface was likely the result of the pellet/cladding mechanical interaction (PCMI) caused by cesium/fuel reactions. The evaluation also suggested that the PCMI was effectively mitigated by a large gap size between the cladding and blanket column.

Journal Articles

Stress/strain effects on industrial superconducting composites

Ito, Takayoshi; Harjo, S.; Osamura, Kozo*; Hemmi, Tsutomu; Awaji, Satoshi*; Machiya, Shutaro*; Oguro, Hidetoshi*; Nishijima, Gen*; Takahashi, Koki*; Matsui, Kunihiro; et al.

Materials Science Forum, 681, p.209 - 214, 2011/05

 Times Cited Count:1 Percentile:50.93(Materials Science, Multidisciplinary)

JAEA Reports

Mizunami Underground Research Laboratory Project, Annual report for fiscal year 2009

Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Hayano, Akira; Takeuchi, Ryuji; Saegusa, Hiromitsu; Oyama, Takuya; Mizuno, Takashi; et al.

JAEA-Review 2011-007, 145 Pages, 2011/03

JAEA-Review-2011-007.pdf:16.51MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) Project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). Geoscientific research and the MIU Project are planned in three overlapping phases; Surface-based Investigation Phase (Phase 1), Construction Phase (Phase 2) and Operation Phase (Phase 3). Currently, the project is under the Construction Phase. This document introduces the results of the research and development in fiscal year 2009, as a part of the Construction Phase based on the MIU Master Plan updated in 2002, (1) Investigation at the MIU Construction Site and the Shobasama Site, (2) Construction at the MIU Construction Site, (3) Research Collaboration, etc. The goals of the Phase 2 are to develop and revise the models of the geological environment using the investigation results obtained during excavation and determine and assess changes in the geological environment in response to excavation, to evaluate the effectiveness of engineering techniques used for construction, maintenance and management of underground facilities, to establish detailed investigation plans of Phase 3.

Journal Articles

The Static structure of polyrotaxane in solution investigated by contrast variation small-angle neutron scattering

Endo, Hitoshi; Mayumi, Koichi*; Osaka, Noboru*; Ito, Kozo*; Shibayama, Mitsuhiro*

Polymer Journal, 43(2), p.155 - 163, 2011/02

 Times Cited Count:12 Percentile:34.31(Polymer Science)

Polyrotaxane (PR) possesses a supramolecular structure in which cyclic molecules are threaded into an axial polymer. In this study, the static structure of PR dissolved in a good solvent was investigated using contrast variation small-angle neutron scattering. The conformation of the axial linear polymer and the alignment of cyclic molecules within the axial polymer were evaluated quantitatively with the help of a detailed derivation of scattering theory. The decomposed partial scattering functions of the cyclic molecules and the axial polymer and the cross-correlation between cyclic molecules and an axial polymer strongly supported the idea that the alignment of cyclic molecules threaded on the axial polymer is random. On the basis of experimental observation, the entropic origin of the stiffening of PR due to the array of cyclic molecules is discussed.

JAEA Reports

Mizunami Underground Research Laboratory Project Plan for fiscal year 2010

Takeuchi, Shinji; Kunimaru, Takanori; Mikake, Shinichiro; Nishio, Kazuhisa; Tsuruta, Tadahiko; Matsuoka, Toshiyuki; Hayano, Akira; Takeuchi, Ryuji; Saegusa, Hiromitsu; Oyama, Takuya; et al.

JAEA-Review 2010-029, 28 Pages, 2010/08

JAEA-Review-2010-029.pdf:3.43MB

Japan Atomic Energy Agency (JAEA) at Tono Geoscience Center (TGC) is pursuing a geoscientific research and development project namely the Mizunami Underground Research Laboratory (MIU) project in crystalline rock environment in order to construct scientific and technological basis for geological disposal of High-level Radioactive Waste (HLW). Geoscientific research and the MIU project is planned in three overlapping phases; Surface-based investigation phase (Phase1), Construction phase (Phase2) and Operation phase (Phase3). The project is currently under the construction phase, and the operation phase starts in 2010. This document introduces the research and development activities planned for 2010 fiscal year plan based on the MIU master plan updated in 2010, (1) Investigation plan, (2) Construction plan, (3) Research collaboration plan, etc.

45 (Records 1-20 displayed on this page)