Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Takagi, Rina*; Matsuyama, Naofumi*; Ukleev, V.*; Yu, L.*; White, J. S.*; Francoual, S.*; Mardegan, J. R. L.*; Hayami, Satoru*; Saito, Hiraku*; Kaneko, Koji; et al.
Nature Communications (Internet), 13(1), p.1472_1 - 1472_7, 2022/03
Nishimura, Shoichiro*; Torii, Hiroyuki*; Fukao, Yoshinori*; Ito, Takashi; Iwasaki, Masahiko*; Kanda, Sotaro*; Kawagoe, Kiyotomo*; Kawall, D.*; Kawamura, Naritoshi*; Kurosawa, Noriyuki*; et al.
Physical Review A, 104(2), p.L020801_1 - L020801_6, 2021/08
Times Cited Count:0 Percentile:0.01(Optics)Noma, Yuichiro*; Kotegawa, Hisashi*; Kubo, Tetsuro*; To, Hideki*; Harima, Hisatomo*; Haga, Yoshinori; Yamamoto, Etsuji; Onuki, Yoshichika*; Ito, Kohei*; Nakamura, Ai*; et al.
Journal of the Physical Society of Japan, 90(7), p.073707_1 - 073707_5, 2021/07
Times Cited Count:0 Percentile:0(Physics, Multidisciplinary)Yoshida, Shogo*; Koyama, Takehide*; Yamada, Haruhiko*; Nakai, Yusuke*; Ueda, Koichi*; Mito, Takeshi*; Kitagawa, Kentaro*; Haga, Yoshinori
Physical Review B, 103(15), p.155153_1 - 155153_5, 2021/04
Times Cited Count:0 Percentile:0(Materials Science, Multidisciplinary)Kitamura, Ryo; Bae, S.*; Choi, S.*; Fukao, Yoshinori*; Iinuma, Hiromi*; Ishida, Katsuhiko*; Kawamura, Naritoshi*; Kim, B.*; Kondo, Yasuhiro; Mibe, Tsutomu*; et al.
Physical Review Accelerators and Beams (Internet), 24(3), p.033403_1 - 033403_9, 2021/03
A negative muonium ion (Mu) source using an aluminum foil target was developed as a low-energy muon source. An experiment to produce Mu
ions was conducted to evaluate the performance of the Mu
ion source. The measured event rate of Mu
ions was
Mu
/s when the event rate of the incident muon beam was
/s. The formation probability, defined as the ratio of the Mu
ions to the incident muons on the Al target, was
. This Mu
ion source boosted the development of the muon accelerator, and the practicality of this low-energy muon source obtained using a relatively simple apparatus was demonstrated.
Otani, Masashi*; Fukao, Yoshinori*; Futatsukawa, Kenta*; Kawamura, Naritoshi*; Matoba, Shiro*; Mibe, Tsutomu*; Miyake, Yasuhiro*; Shimomura, Koichiro*; Yamazaki, Takayuki*; Hasegawa, Kazuo; et al.
Journal of Physics; Conference Series, 1350, p.012067_1 - 012067_6, 2019/12
Times Cited Count:0 Percentile:0.07Negative muonium atom (e
e
, Mu
) has unique features stimulating potential interesting for several scientific fields. Since its discovery in late 1980's in vacuum, it has been discussed that the production efficiency would be improved using a low-work function material. C12A7 was a well-known insulator as a constituent of alumina cement, but was recently confirmed to exhibit electric conductivity by electron doping. The C12A7 electride has relatively low-work function (2.9 eV). In this paper, the negative muonium production measurement with several materials including a C12A7 electride film will be presented. Measured production rate of the Mu
were 10
/s for all the Al, electride, and SUS target. Significant enhancement on electride target was not observed, thus it is presumed that the surface condition should be more carefully treated. There was no material dependence of the Mu
averaged energy: it was 0.2
0.1keV.
Fujimori, Shinichi; Kobata, Masaaki; Takeda, Yukiharu; Okane, Tetsuo; Saito, Yuji; Fujimori, Atsushi; Yamagami, Hiroshi; Haga, Yoshinori; Yamamoto, Etsuji; Onuki, Yoshichika*
Physical Review B, 99(3), p.035109_1 - 035109_5, 2019/01
Times Cited Count:6 Percentile:51.19(Materials Science, Multidisciplinary)Fujimori, Shinichi; Takeda, Yukiharu; Okane, Tetsuo; Saito, Yuji; Fujimori, Atsushi; Yamagami, Hiroshi; Haga, Yoshinori; Yamamoto, Etsuji; Onuki, Yoshichika*
Progress in Nuclear Science and Technology (Internet), 5, p.82 - 85, 2018/11
Takeda, Yukiharu; Okane, Tetsuo; Saito, Yuji; Yamagami, Hiroshi; Yamamoto, Etsuji; Haga, Yoshinori
Progress in Nuclear Science and Technology (Internet), 5, p.171 - 174, 2018/11
Nakajima, Taro*; Inamura, Yasuhiro; Ito, Takayoshi*; Oishi, Kazuki*; Oike, Hiroshi*; Kagawa, Fumitaka*; Kikkawa, Akiko*; Taguchi, Yasujiro*; Kakurai, Kazuhisa*; Tokura, Yoshinori*; et al.
Physical Review B, 98(1), p.014424_1 - 014424_5, 2018/07
Times Cited Count:4 Percentile:32.53(Materials Science, Multidisciplinary)We investigated the phase-transition kinetics of magnetic skyrmion lattice (SkL) in MnSi by means of stroboscopic small-angle neutron scattering (SANS). Temporal evolutions of SANS patterns were measured with time resolution of 13 ms while sweeping temperature as fast as 50 Ks. It turned out that the paramagnetic-to-SkL transition immediately occurs upon traversing the equilibrium phase boundary on the rapid cooling, whereas the SkL-to-conical transition can be kinetically avoided to realize the low-temperature metastable SkL with a long-range magnetic order. The formation of the metastable SkL was found to be strongly dependent not only on cooling rate, but also on magnetic eld and trajectory in the H-T phase diagram.
Bae, S.*; Choi, H.*; Choi, S.*; Fukao, Yoshinori*; Futatsukawa, Kenta*; Hasegawa, Kazuo; Iijima, Toru*; Iinuma, Hiromi*; Ishida, Katsuhiko*; Kawamura, Naritoshi*; et al.
Physical Review Accelerators and Beams (Internet), 21(5), p.050101_1 - 050101_6, 2018/05
Times Cited Count:11 Percentile:81.67(Physics, Nuclear)Muons have been accelerated by using a radio-frequency accelerator for the first time. Negative muonium atoms (Mu), which are bound states of positive muons and two electrons, are generated from through the electron capture process in an aluminum degrader. The generated Mu
's are initially electrostatically accelerated and injected into a radio-frequency quadrupole linac (RFQ). In the RFQ, the Mu
's are accelerated to 89 keV. The accelerated Mu
's are identified by momentum measurement and time of flight. This compact muon linac opens the door to various muon accelerator applications including particle physics measurements and the construction of a transmission muon microscope.
Takeda, Yukiharu; Saito, Yuji; Okane, Tetsuo; Yamagami, Hiroshi; Matsuda, Tatsuma*; Yamamoto, Etsuji; Haga, Yoshinori; Onuki, Yoshichika*
Physical Review B, 97(18), p.184414_1 - 184414_7, 2018/05
Times Cited Count:1 Percentile:8.26(Materials Science, Multidisciplinary)Noma, Yuichiro*; Kotegawa, Hisashi*; Kubo, Tetsuro*; To, Hideki*; Harima, Hisatomo*; Haga, Yoshinori; Yamamoto, Etsuji; Onuki, Yoshichika*; Ito, Kohei*; Haller, E. E.*; et al.
Journal of the Physical Society of Japan, 87(3), p.033704_1 - 033704_5, 2018/03
Times Cited Count:4 Percentile:47.76(Physics, Multidisciplinary)Kitamura, Ryo*; Otani, Masashi*; Kondo, Yasuhiro; Bae, S.*; Choi, S.*; Fukao, Yoshinori*; Futatsukawa, Kenta*; Hasegawa, Kazuo; Iinuma, Hiromi*; Ishida, Katsuhiko*; et al.
Proceedings of 14th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.100 - 103, 2017/12
Muon acceleration is an important technique in exploring the new frontier of physics. A new measurement of the muon dipole moments is planned in J-PARC using the muon linear accelerator. The low-energy (LE) muon source using the thin metal foil target and beam diagnostic system were developed for the world's first muon acceleration. Negative muonium ions from the thin metal foil target as the LE muon source was successfully observed. Also the beam profile of the LE positive muon was measured by the LE-dedicated beam profile monitor. The muon acceleration test using a Radio-Frequency Quadrupole linac (RFQ) is being prepared as the first step of the muon accelerator development. In this paper, the latest status of the first muon acceleration test is described.
Ueno, Yasuhiro*; Aoki, Masaharu*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Keiichi*; Ito, Takashi; Iwasaki, Masahiko*; et al.
Hyperfine Interactions, 238(1), p.14_1 - 14_6, 2017/11
Times Cited Count:3 Percentile:90.77Fujimori, Shinichi; Kobata, Masaaki; Takeda, Yukiharu; Okane, Tetsuo; Saito, Yuji; Fujimori, Atsushi; Yamagami, Hiroshi; Matsumoto, Yuji*; Yamamoto, Etsuji; Tateiwa, Naoyuki; et al.
Physical Review B, 96(12), p.125117_1 - 125117_9, 2017/09
Times Cited Count:7 Percentile:35.83(Materials Science, Multidisciplinary)Fujimori, Shinichi; Kobata, Masaaki; Takeda, Yukiharu; Okane, Tetsuo; Saito, Yuji; Fujimori, Atsushi; Yamagami, Hiroshi; Haga, Yoshinori; Yamamoto, Etsuji; Onuki, Yoshichika*
Physical Review B, 96(11), p.115126_1 - 115126_10, 2017/09
Times Cited Count:6 Percentile:41.1(Materials Science, Multidisciplinary)Kitamura, Ryo*; Otani, Masashi*; Fukao, Yoshinori*; Kawamura, Naritoshi*; Mibe, Tsutomu*; Miyake, Yasuhiro*; Shimomura, Koichiro*; Kondo, Yasuhiro; Hasegawa, Kazuo; Bae, S.*; et al.
Proceedings of 8th International Particle Accelerator Conference (IPAC '17) (Internet), p.2311 - 2313, 2017/06
Muon acceleration is an important technique in exploring the new frontier of physics. A new measurement of the muon dipole moments is planned in J-PARC using the muon linear accelerator. The low-energy (LE) muon source using the thin metal foil target and beam diagnostic system were developed for the world's first muon acceleration. Negative muonium ions from the thin metal foil target as the LE muon source was successfully observed. Also the beam profile of the LE positive muon was measured by the LE-dedicated beam profile monitor. The muon acceleration test using a Radio-Frequency Quadrupole linac (RFQ) is being prepared as the first step of the muon accelerator development. In this paper, the latest status of the first muon acceleration test is described.
Kondo, Yasuhiro; Hasegawa, Kazuo; Otani, Masashi*; Mibe, Tsutomu*; Fukao, Yoshinori*; Kawamura, Naritoshi*; Miyake, Yasuhiro*; Shimomura, Koichiro*; Kitamura, Ryo*; Ishida, Katsuhiko*; et al.
Proceedings of 28th International Linear Accelerator Conference (LINAC 2016) (Internet), p.992 - 995, 2017/05
The muon linear accelerator for the muon g-2/EDM experiment in J-PARC is being developed. As the first step of the muon acceleration, the muon acceleration with J-PARC RFQ (Radio-Frequency Quadrupole)-II plans to be demonstrated at H-line of J-PARC MLF. The slow muon will be obtained by the deceleration using the thin metal foil target in the RFQ acceleration test. The intensity of the decelerated muon by the thin metal foil was measured. Based on this result, the beam intensity in the RFQ test at H-line is estimated to be a few /sec. The particle simulation of the RFQ and the following beam diagnostics system is conducted, and it is shown that the emittance measurement at the RFQ exit using the micro-channel plate based beam profile monitor is feasible.
Strasser, P.*; Aoki, Masaharu*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Keiichi*; Ito, Takashi; Iwasaki, Masahiko*; et al.
Hyperfine Interactions, 237(1), p.124_1 - 124_9, 2016/12
Times Cited Count:6 Percentile:92.96