Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Performance test of J-PARC 324 MHz klystrons

Fuwa, Yasuhiro; Shinozaki, Shinichi; Chishiro, Etsuji; Hirane, Tatsuya; Fang, Z.*; Fukui, Yuji*; Futatsukawa, Kenta*; Mizobata, Satoshi*; Iwama, Yuhei*; Sato, Yoshikatsu*; et al.

Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.611 - 613, 2019/10

In the J-PARC linac, a proton accelerator is operated using 45 units of 324 MHz and 972 MHz klystrons. In the future stabilization and advancement of the accelerator, it is important to acquire the klystron output characteristics near the maximum output accurately. In order to understand this characteristics, measurement of the characteristics of the replaced klystron for some reason such as discharge, as well as the new klystron. However, such measurements have not been performed because of the risk of damage including peripheral equipment due to discharge and the temporal interference with the operation of the accelerator. Therefore, we set up a klystron test stand in the linac building and measured the high-voltage characteristics and input/output characteristics of the klystron under various operating parameters. By using this measurement result, the characteristics of klystron can be obtained before installation, and it becomes possible to determine the optimum operation parameters and make effective plan of klystron replacements. In addition, basic data for predicting the degradation tendency of klystron was acquired by comparing the characteristics of the used and used klystron.

Journal Articles

Increment of the machine protection system in J-PARC rapid cycling synchrotron

Yamamoto, Kazami; Kawase, Masato; Iwama, Yuhei; Fukuta, Shimpei; Kato, Yuko; Ouchi, Nobuo; Meigo, Shinichiro; Oi, Motoki; Kamikubota, Norihiko*

Proceedings of 11th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.771 - 774, 2014/10

The radiation leak accident happened in the hadron experimental hall of J-PARC on May 23, 2013. The accident was caused by a target sublimation due to an unanticipated beam from the 50 GeV main ring (MR). To detect and prevent the radiation leakage in all facilities of J-PARC, we improve the machine protection system (MPS). In the J-PARC 3GeV synchrotron (Rapid Cycling Synchrotron, RCS), a monitoring system of an abnormal state of the extraction beam to the mercury target of material life science experiment facility (MLF) were prepared. The radiation level of the gas in the tunnel were able to always observed by connecting radiation safety system and accelerator control system. The dump temperature was included in the MPS. We also developed new interlock system that can stop the beam immediately when the beam current exceed the limit.

Journal Articles

Beam loss monitor system of the Rapid Cycling Synchrotron of Japan Proton Accelerator Research Complex

Yamamoto, Kazami; Hayashi, Naoki; Hatakeyama, Shuichiro; Saeki, Riuji; Iwama, Yuhei

Proceedings of 10th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1060 - 1064, 2014/06

The 3 GeV Rapid Cycling Synchrotron (RCS) of the Japan Proton AcceleratoR Complex (J-PARC) provides more than 300 kW beam to the Material and Life Science Facility (MLF) and the Main Ring (MR). In such high intensity hadron accelerator, the lost protons that are a fraction of the beam less than 0.1% cause many problems. Those particles bring about a serious radioactivation and a malfunction of the accelerator components. Therefore, the beam loss monitor (BLM) is one of the most important equipment to observe the state of the beam during operation, and to keep a steady operation. Moreover, if we set operation parameters of BLM adequately, it can detect the beam loss that is 10$$^{-6}$$ fraction of the beam. Thus it enables fine-tuning of the accelerator. In the J-PARC RCS, a proportional counter and a plastic scintillation counter are used for the beam commission and the stable operation as BLM. We report present status of the BLM system in J-PARC RCS.

3 (Records 1-3 displayed on this page)
  • 1