Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Araki, Shingo*; Iwamoto, Kaisei*; Akiba, Kazuto*; Kobayashi, Tatsuo*; Munakata, Koji*; Kaneko, Koji; Osakabe, Toyotaka
Physical Review B, 110(9), p.094420_1 - 094420_7, 2024/09
Times Cited Count:0The -Mn phase exhibits a large anomalous Hall effect (AHE) in its pressure-induced weak ferromagnetic (WFM) state, despite its relatively small spontaneous magnetization of 0.02 /Mn. To understand the underlying mechanism behind this AHE, we performed single crystal neutron diffraction measurements at 2.0 GPa to determine the magnetic structure of the WFM phase. Our investigation reveals a ferrimagnetic structure characterized by nearly collinear magnetic moments aligned along the [001] direction at sites I, II, III-1, and IV-1. In contrast, the small moments at sites III-2 and IV-2 lie within the (001) plane. The calculated net magnetization of this magnetic structure, (-0.0200.005)/Mn atom, is in excellent agreement with the experimentally determined spontaneous magnetization. The observation of a magnetic reflection at = (0, 0, 0) satisfies a key condition for the emergence of the AHE.