Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Nagai, Yuki; Iwasaki, Yutaka*; Kitahara, Koichi*; Takagiwa, Yoshiki*; Kimura, Kaoru*; Shiga, Motoyuki
Physical Review Letters, 132(19), p.196301_1 - 196301_6, 2024/05
Times Cited Count:4 Percentile:87.37(Physics, Multidisciplinary)A quasicrystal is an ordered but non-periodic structure understood as a projection from a higher dimensional periodic structure. An anomalous increase in heat capacity at high temperatures has been discussed for over two decades as a manifestation of a hidden high dimensionality of quasicrystals. A theoretical study of the heat capacity of realistic quasicrystals or their approximants has yet to be conducted because of the huge computational complexity. To bridge this gap between experiment and theory, we show experiments and cutting-edge machine-learning molecular simulations on the same material, an Al-Pd-Ru quasicrystal, and its approximants. We show that at high temperatures, aluminum atoms diffuse with discontinuous-like jumps, and the diffusion paths of the aluminum can be understood in terms of jumps corresponding to hyperatomic fluctuations in six-dimensional space.
Revel, A.*; Wu, J.*; Iwasaki, Hironori*; Ash, J.*; Bazin, D.*; Brown, B. A.*; Chen, J.*; Elder, R.*; Farris, P.*; Gade, A.*; et al.
Physics Letters B, 838, p.137704_1 - 137704_7, 2023/03
Times Cited Count:3 Percentile:62.61(Astronomy & Astrophysics)no abstracts in English
Uchiyama, Yusuke*; Tokunaga, Natsuki*; Azuma, Kohei*; Kamidaira, Yuki; Tsumune, Daisuke*; Iwasaki, Toshiki*; Yamada, Masatoshi*; Tateda, Yutaka*; Ishimaru, Takashi*; Ito, Yukari*; et al.
Science of the Total Environment, 816, p.151573_1 - 151573_13, 2022/04
Times Cited Count:10 Percentile:62.28(Environmental Sciences)no abstracts in English
Ash, J.*; Iwasaki, Hironori*; Mijatovi, T.*; Budner, T.*; Elder, R.*; Elman, B.*; Friedman, M.*; Gade, A.*; Grinder, M.*; Henderson, J.*; et al.
Physical Review C, 103(5), p.L051302_1 - L051302_6, 2021/05
Times Cited Count:3 Percentile:36.17(Physics, Nuclear)no abstracts in English
Strasser, P.*; Abe, Mitsushi*; Aoki, Masaharu*; Choi, S.*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; et al.
EPJ Web of Conferences, 198, p.00003_1 - 00003_8, 2019/01
Times Cited Count:15 Percentile:98.57(Quantum Science & Technology)Ueno, Yasuhiro*; Aoki, Masaharu*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; Ito, Takashi; Iwasaki, Masahiko*; et al.
Hyperfine Interactions, 238(1), p.14_1 - 14_6, 2017/11
Times Cited Count:4 Percentile:87.69(Physics, Atomic, Molecular & Chemical)Strasser, P.*; Aoki, Masaharu*; Fukao, Yoshinori*; Higashi, Yoshitaka*; Higuchi, Takashi*; Iinuma, Hiromi*; Ikedo, Yutaka*; Ishida, Katsuhiko*; Ito, Takashi; Iwasaki, Masahiko*; et al.
Hyperfine Interactions, 237(1), p.124_1 - 124_9, 2016/12
Times Cited Count:7 Percentile:89.58(Physics, Atomic, Molecular & Chemical)Fuketa, Toyoshi; Nakamura, Takehiko; Nagase, Fumihisa; Nakamura, Jinichi; Suzuki, Motoe; Sasajima, Hideo; Sugiyama, Tomoyuki; Amaya, Masaki; Kudo, Tamotsu; Chuto, Toshinori; et al.
JAEA-Review 2006-004, 226 Pages, 2006/03
Fuel Safety Research Meeting 2005, which was organized by the Japan Atomic Energy Agency was held on March 2-3, 2005 at Toshi Center Hotel, Tokyo. The purposes of the meeting are to present and discuss the results of experiments and analyses on reactor fuel safety and to exchange views and experiences among the participants. The technical topics of the meeting covered the status of fuel safety research activities, fuel behavior under Reactivity Initiated Accident (RIA) and Loss of coolant accident (LOCA) conditions, high fuel behavior, and radionuclide release under severe accident conditions. This summary contains all the abstracts and sheets of viewgraph presented in the meeting.
Onishi, Takeo*; Gelberg, A.*; Sakurai, Hiroyoshi*; Yoneda, Kenichiro*; Aoi, Nori*; Imai, Nobuaki*; Baba, Hidetada*; Von Brentano, P.*; Fukuda, Naoki*; Ichikawa, Yuichi*; et al.
Physical Review C, 72(2), p.024308_1 - 024308_7, 2005/08
Times Cited Count:23 Percentile:78.14(Physics, Nuclear)no abstracts in English
Nishihara, Kenji; Iwasaki, Tomohiko*; Udagawa, Yutaka*
Journal of Nuclear Science and Technology, 40(7), p.481 - 492, 2003/07
Times Cited Count:18 Percentile:71.90(Nuclear Science & Technology)A new one-point equation is derived according to the balance of the fission neutrons. The equation has the same form as the conventional equation containing keff. The variables of the equation are the number of the fission neutrons and the delayed neutron precursors, and the coefficients are the multiplication factors of a prompt fission neutron, a delayed neutron and a source neutron. In the equation derived here, all variables and coefficients have each clear physical meaning. Analytic, deterministic and probabilistic calculations of the equation are performed for an accelerator-driven system.
Nagai, Yuki; Iwasaki, Yutaka*; Takagiwa, Yoshiki*; Kitahara, Koichi*; Kimura, Kaoru*; Shiga, Motoyuki
no journal, ,
A quasicrystal is an ordered but non-periodic structure understood as a projection from a higher dimensional periodic structure. An anomalous increase in heat capacity at high temperatures has been discussed for over two decades as a manifestation of a hidden high dimensionality of quasicrystals. A theoretical study of the heat capacity of realistic quasicrystals or their approximants has yet to be conducted because of the huge computational complexity. To bridge this gap between experiment and theory, we show experiments and cutting-edge machine-learning molecular simulations on the same material, an Al-Pd-Ru quasicrystal, and its approximants. We show that at high temperatures, aluminum atoms diffuse with discontinuous-like jumps, and the diffusion paths of the aluminum can be understood in terms of jumps corresponding to hyperatomic fluctuations in six-dimensional space.
Nagai, Yuki; Iwasaki, Yutaka*; Kitahara, Koichi*; Kimura, Kaoru*; Shiga, Motoyuki
no journal, ,
no abstracts in English
Nagai, Yuki; Iwasaki, Yutaka*; Kitahara, Koichi*; Kimura, Kaoru*; Shiga, Motoyuki
no journal, ,
In this talk, I give an overview of machine learning molecular simulation, a field that has recently been very active in research, and introduce its application to the analysis of high dimensionality in quasicrystals. I introduce machine learning molecular simulations in an easy-to-understand manner for those outside the field as a useful example of machine learning applications to physics. A quasicrystal is a material that has an ordered crystal structure but is not periodic. The crystal structure of quasicrystals can be understood as the projection of a superlattice in higher dimensional (5D or 6D) space onto real space (3D). In this talk, I report the results of specific heat analysis using experiments and machine learning molecular simulations to show that this higher dimensionality is actually reflected in observable physical quantities in the real world.
Nagai, Yuki; Iwasaki, Yutaka*; Kitahara, Koichi*; Kimura, Kaoru*; Shiga, Motoyuki
no journal, ,
A quasicrystal is an ordered but non-periodic structure understood as a projection from a higher dimensional periodic structure. An anomalous increase in heat capacity at high temperatures has been discussed for over two decades as a manifestation of a hidden high dimensionality of quasicrystals. A theoretical study of the heat capacity of realistic quasicrystals or their approximants has yet to be conducted because of the huge computational complexity. To bridge this gap between experiment and theory, we show experiments and cutting-edge machine-learning molecular simulations on the same material, an Al-Pd-Ru quasicrystal, and its approximants. We show that at high temperatures, aluminum atoms diffuse with discontinuous-like jumps, and the diffusion paths of the aluminum can be understood in terms of jumps corresponding to hyperatomic fluctuations in six-dimensional space.