Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Iwase, Akihiro*; Fukuda, Kengo*; Saito, Yuichi*; Okamoto, Yoshihiro; Semboshi, Satoshi*; Amekura, Hiroshi*; Matsui, Toshiyuki*
Journal of Applied Physics, 132(16), p.163902_1 - 163902_10, 2022/10
Times Cited Count:0 Percentile:0.00(Physics, Applied)Amorphous SiO samples were implanted with 380 keV Fe ions at room temperature. After implantation, some of the samples were irradiated with 16 MeV Au ions. magnetic properties were investigated using a SQUID magnetometer, and the morphology of the Fe-implanted SiO samples was examined using transmission electron microscopy and X-ray absorption spectroscopy (EXAFS and XANES), which showed that the size of Fe nanoparticles was increasing The size of Fe nanoparticles increased with increasing Fe implantation amount; some of the Fe nanoparticles consisted of Fe oxides, and the valence and structure of Fe atoms became closer to that of metallic -Fe with increasing Fe injection amount. The magnetization-field curve of the sample implanted with a small amount of Fe was reproduced by Langevin's equation, suggesting that the Fe nanoparticles behave in a superparamagnetic manner. In addition, when a large amount of Fe was implanted, the magnetization-magnetic field curve shows a ferromagnetic state. These magnetic property results are consistent with the X-ray absorption results. Subsequent 16 MeV Au irradiation crushed the Fe nanoparticles, resulting in a decrease in magnetization.
Kimata, Tetsuya*; Kakitani, Kenta*; Yamamoto, Shunya*; Shimoyama, Iwao; Matsumura, Daiju; Iwase, Akihiro*; Mao, W.*; Kobayashi, Tomohiro*; Yamaki, Tetsuya*; Terai, Takayuki*
Physical Review Materials (Internet), 6(3), p.035801_1 - 035801_7, 2022/03
Times Cited Count:7 Percentile:56.17(Materials Science, Multidisciplinary)Yamamoto, Yuki*; Ishikawa, Norito; Hori, Fuminobu*; Iwase, Akihiro*
Quantum Beam Science (Internet), 4(3), p.26_1 - 26_13, 2020/09
The lattice constant and the magnetic state of CeO are modified by the irradiation with 200 MeV Xe ions. Under the assumption that these modifications are induced in the narrow one-dimensional region (the ion track) along the ion beam path, the dependence of the lattice constant and the saturation magnetization of CeO on the Xe ion fluence can be analyzed by using the Poisson distribution function. The analysis reveals that the lattice constant inside the ion track, which is larger than outside the ion track is not affected by the overlapping of the ion track. The present result implies that the Poisson distribution function is useful for describing the effect of ion track overlapping on the ion irradiation induced ferromagnetic state in CeO.
Sasajima, Yasushi*; Ajima, Naoki*; Kaminaga, Ryuichi*; Ishikawa, Norito; Iwase, Akihiro*
Nuclear Instruments and Methods in Physics Research B, 440, p.118 - 125, 2019/02
Times Cited Count:2 Percentile:21.69(Instruments & Instrumentation)In the present paper, we have extensively analyzed the atomic structures generated by supplying a thermal spike to the single crystal CeO. Our analysis results were compared with the atomic structures obtained by the microscope experiments. Our simulation reproduced the distribution of the numbers of oxygen atoms obtained from the analysis of microscope images. We found that the number of vacancies was increased abruptly immediately after the thermal spike, and the number subsequently dropped through a relaxation process within 3 ps.
Hata, Kuniki; Inoue, Hiroyuki*; Kojima, Takao*; Kasahara, Shigeki; Hanawa, Satoshi; Ueno, Fumiyoshi; Tsukada, Takashi; Iwase, Akihiro*
Proceedings of Symposium on Water Chemistry and Corrosion in Nuclear Power Plants in Asia 2017 (AWC 2017) (USB Flash Drive), p.304 - 314, 2017/09
A model simulation of radiolysis of mixed solutions of NaCl and NaBr was carried out. The simulation result agreed well with the experimental result, and Br played an important role in determining the amounts of products from water radiolysis. The simulation result also showed that, in highly pure NaCl solutions, the steady-state concentration of a radolytic product, HO, was mainly controlled by three reactions (Cl + OH ClOH, ClOH Cl + OH, and ClOH + H Cl + HO), which indicated that accurate evaluation of the rate constants of these reactions was very important in improving the radiolysis simulation of solutions containing Cl. An immersion test using a low-alloy steel, SQV2A, in the mixed solutions was also carried out under irradiation. The corrosion rate increased or decreased depending on the pH or the concentrations of the halide ions in a similar way to the change in concentration of HO produced from water radiolysis, which is affected by the presence of Cl and Br. However, at high pH values (12), the corrosion rate was almost zero even though the concentration of HO was high. This could be attributed to enhancement of the passivity of test specimens at higher pH values.
Kojima, Hiroshi*; Kaneno, Yasuyuki*; Ochi, Masaaki*; Semboshi, Satoshi*; Hori, Fuminobu*; Saito, Yuichi*; Ishikawa, Norito; Okamoto, Yoshihiro; Iwase, Akihiro*
Materials Transactions, 58(5), p.739 - 748, 2017/05
Times Cited Count:5 Percentile:24.35(Materials Science, Multidisciplinary)Bulk samples of NiNb and NiTa intermetallic compounds were irradiated with 16 MeV Au, 4.5 MeV Ni, 4.5 MeV Al, 200 MeV Xe and 1.0 MeV He ions, and the change in near-surface lattice structure was investigated by means of the grazing incidence X-ray diffraction (GIXD)and EXAFS. The NiNb and NiTa lattice structures transform from the ordered structures (orthorhombic and monoclinic structures for NiNb and NiTa, respectively) to the amorphous state by the Au, Ni, Al and Xe ion irradiations. Irrespective of such heavy ion species or energies, the lattice structure transformation to the amorphous state almost correlate with the density of energy deposited through elastic collisions.
Mayumi, Ren*; Semboshi, Satoshi*; Okamoto, Yoshihiro; Saito, Yuichi*; Yoshiie, Toshimasa*; Iwase, Akihiro*
Transactions of the Materials Research Society of Japan, 42(1), p.9 - 14, 2017/02
AlCu binary alloys were irradiated with 16 MeV Au, 4.5 MeV Ni or 4.5 MeV Al ions at room temperature. Changes in surface hardness and the local atomic structure around Cu atoms were examined by using the Vickers hardness measurement and the EXAFS measurements, respectively. Some specimens were aged at 453 K and Vickers hardness was measured. The computer simulation was also performed by using the rate equation method. The hardness of irradiated specimens increased much faster than that of the aged specimens and it became larger than the maximum value of the hardness for the aged specimens. The comparison of the experimental EXAFS result with that of FEFF simulation suggests that the ion irradiation produced small Cu precipitates in the specimens. The computer simulation visualized the growth process of Cu precipitates during the irradiation, and the result qualitatively corresponds to the experimental result.
Yukawa, Takuji*; Inoue, Hiroyuki*; Kojima, Takao*; Iwase, Akihiro*; Taniguchi, Naoki; Tachikawa, Hirokazu*
Zairyo To Kankyo 2016 Koenshu (CD-ROM), p.359 - 362, 2016/05
The immersion tests of pure titanium were carried out in aqueous solution containing carbonate/bicarbonate with 50 mM-chloride ion under gamma irradiation. The effect of pH on general corrosion rate of titanium were studied. The experimental results showed that the concentration of hydrogen preoxide was increased with pH, and the corrosion rate increased with the hydrogen preoxide concentration. The corrosion rate in pH12 and 13 were 5 to10 times larger than those under unirradiated conditions.
Kojima, Hiroshi*; Yoshizaki, Hiroaki*; Kaneno, Yasuyuki*; Semboshi, Satoshi*; Hori, Fuminobu*; Saito, Yuichi; Okamoto, Yoshihiro; Iwase, Akihiro*
Nuclear Instruments and Methods in Physics Research B, 372, p.72 - 77, 2016/04
Times Cited Count:9 Percentile:62.19(Instruments & Instrumentation)NiNb and NiTa intermetallic compounds, which show the complicated lattice structures were irradiated with 16 MeV Au ions at room temperature. The X-ray diffraction measurement revealed that the lattice structure of these intermetallic compounds changed from the ordered structures to the amorphous state by the ion irradiation. The irradiation-induced amorphization caused the increase in Vickers hardness. The result was compared with our previous results for NiAl and NiV, and was discussed in terms of the intrinsic lattice structures of the samples.
Hata, Kuniki; Inoue, Hiroyuki*; Kojima, Takao*; Iwase, Akihiro*; Kasahara, Shigeki; Hanawa, Satoshi; Ueno, Fumiyoshi; Tsukada, Takashi
Nuclear Technology, 193(3), p.434 - 443, 2016/03
Times Cited Count:13 Percentile:75.00(Nuclear Science & Technology)Narisawa, Masaki*; Koka, Masashi; Takeyama, Akinori; Sugimoto, Masaki; Idesaki, Akira; Sato, Takahiro; Hokazono, Hiroki*; Kawai, Taketoshi*; Iwase, Akihiro*
Journal of the Ceramic Society of Japan, 123(9), p.805 - 808, 2015/09
Ueyama, Daichi*; Saito, Yuichi; Ishikawa, Norito; Omura, Takahito*; Semboshi, Satoshi*; Hori, Fuminobu*; Iwase, Akihiro*
Nuclear Instruments and Methods in Physics Research B, 351, p.1 - 5, 2015/05
Times Cited Count:7 Percentile:49.28(Instruments & Instrumentation)Hanawa, Satoshi; Hata, Kuniki; Shibata, Akira; Chimi, Yasuhiro; Kasahara, Shigeki; Tsutsui, Nobuyuki*; Iwase, Akihiro*; Nishiyama, Yutaka
Proceedings of 2014 Nuclear Plant Chemistry Conference (NPC 2014) (USB Flash Drive), 9 Pages, 2014/10
no abstracts in English
Tobita, Toru; Nakagawa, Sho*; Takeuchi, Tomoaki; Suzuki, Masahide; Ishikawa, Norito; Chimi, Yasuhiro; Saito, Yuichi; Soneda, Naoki*; Nishida, Kenji*; Ishino, Shiori*; et al.
Journal of Nuclear Materials, 452(1-3), p.241 - 247, 2014/09
Times Cited Count:19 Percentile:80.15(Materials Science, Multidisciplinary)Three kinds of Fe-based model alloys, Fe-0.018 atomic percent (at.%) Cu, Fe-0.53at.%Cu, and Fe-1.06at.%Cu were irradiated with 2 MeV electrons up to the dose of 210 dpa at 250C. After the irradiation, the increase in Vickers hardness and the decrease in electrical resistivity were observed. The increase in hardness by electron irradiation is proportional to the product of the Cu contents and the square root of the electron dose. The decrease in electrical resistivity is proportional to the product of the square of Cu contents and the electron dose. Cu clustering in the materials with electron irradiation and thermal aging was observed by means of the three dimensional atom probes (3D-AP). The change in Vickers hardness and electrical resistivity is well correlated with the volume fraction of Cu clusters.
Koide, Tetsuya*; Sato, Takahiro; Koka, Masashi; Saito, Yuichi; Kamiya, Tomihiro; Okochi, Takuo*; Kotsugi, Masato*; Kinoshita, Toyohiko*; Nakamura, Tetsuya*; Iwase, Akihiro*; et al.
Japanese Journal of Applied Physics, 53(5S1), p.05FC06_1 - 05FC06_4, 2014/05
Times Cited Count:12 Percentile:45.92(Physics, Applied)We previously reported that the magnetic state of FeRh can be controlled by irradiation with ion beams. In this paper, we evaluate possibility of magnetic patterning on FeRh thin films using energetic light ion microbeam irradiation with various shapes and dimensions. Proton microbeam irradiation with 2 MeV was performed at JAEA-Takasaki to produce micron-sized magnetic patterns. XMCD-PEEM observation was performed at SPring8 to confirm the synthesized magnetic patterns. As a result, the XMCD-PEEM images of the various micrometer sized patters in FeRh film were observed using 2 MeV H ion beam. The observed bright regions are considered to have ferromagnetic spin orders, in contrast that the gray areas have anti-ferromagnetic spin order. Since the brightness of the PEEM images is strongly correlated with the magnetization of the samples, we reveal that the magnetic state in local regions of the FeRh thin films can be controlled by changing the ion fluences.
Ueyama, Daichi*; Semboshi, Satoshi*; Saito, Yuichi; Ishikawa, Norito; Nishida, Kenji*; Soneda, Naoki*; Hori, Fuminobu*; Iwase, Akihiro*
Japanese Journal of Applied Physics, 53(5S1), p.05FC04_1 - 05FC04_5, 2014/05
Times Cited Count:9 Percentile:36.99(Physics, Applied)In our previous research, it was found that the hardness of Cu-Ti alloy increased by energetic heavy ion irradiation at room temperature. In the conference, we will show the result of electron beam irradiation on the hardness of Cu-Ti alloys. We used CuTi sheets with the dimension of 10 10 0.250 mm. The specimens were irradiated at 473 K and 523 K with 2 MeV electrons. For comparison, we thermally aged some specimens at the same temperatures as that for the irradiation. The electron fluence of 8.0 10/cm corresponds to the processing time of about 10 h. As a result, the thermal aging for 10 h increases the hardness by 5 or less, which is much smaller than that by the irradiation (about 20). The hardness of the reverse side of irradiated surface is almost the same as that of the irradiated surface. The present result implies that energetic electron irradiation can be a useful tool for controlling the hardness of the "bulk" Cu-Ti alloy.
Matsuda, Norihiro; Kasugai, Yoshimi; Matsumura, Hiroshi*; Iwase, Hiroshi*; Toyoda, Akihiro*; Yashima, Hiroshi*; Sekimoto, Shun*; Oishi, Koji*; Sakamoto, Yukio*; Nakashima, Hiroshi; et al.
Progress in Nuclear Science and Technology (Internet), 4, p.337 - 340, 2014/04
The Neutrinos at the Main Injector (NuMI) at Fermilab produces intense neutrino beam to investigate the phenomena of the neutrino mixing and oscillation. The Hadron Absorber, consists of thick blocks of aluminum, iron and concrete, is placed at the end of decay volume as a dump for primary proton and secondary particles generated in NuMI. In order to estimate the shielding effect, the reaction rate measurements with activation detector were carried out on the back surface of the absorber. The induced activities in the detectors were measured by analyzing their -ray spectra using HPGe detectors. Two kind of peak was showed on two-dimensional distributions of obtained reaction rates at right angle to the beam direction. One was strong peaks at the both horizontal side. And, another smaller was at the top. It was concluded that these peaks were the results of particles streaming through the gaps in the Hadron Absorber shielding.
Sasajima, Yasushi*; Ajima, Naoki*; Osada, Takuya*; Ishikawa, Norito; Iwase, Akihiro*
Nuclear Instruments and Methods in Physics Research B, 316, p.176 - 182, 2013/12
Times Cited Count:4 Percentile:32.18(Instruments & Instrumentation)The structural relaxation caused by the high-energy-ion irradiation of CeO with GdO addition was simulated by the molecular dynamics method. The amount of GdO was changed. As the initial condition, high thermal energy was supplied to the individual atoms within a cylindrical region of nanometer-order radius located in the center of the specimen. The potential proposed by Inaba et al. was utilized to calculate interaction between atoms. The supplied thermal energy was first spent to change the crystal structure into an amorphous one within a short period of about 0.3 ps, then it dissipated in the specimen. By increasing the concentration of GdO, more structural disorder was observed in the sample, which is consistent to the actual experiment.
Sasajima, Yasushi*; Osada, Takuya*; Ishikawa, Norito; Iwase, Akihiro*
Nuclear Instruments and Methods in Physics Research B, 314, p.195 - 201, 2013/11
Times Cited Count:4 Percentile:32.18(Instruments & Instrumentation)The structural modification caused by the high-energy-ion irradiation of single-crystalline uranium dioxide was simulated by the molecular dynamics method. As the initial condition, high kinetic energy was supplied to the individual atoms within a cylindrical region of nanometer-order radius located in the center of the specimen. The potential proposed by Basak et al. was utilized to calculate interaction between atoms. The supplied kinetic energy was first spent to change the crystal structure into an amorphous one within a short period of about 0.3 ps, then it dissipated in the specimen. The amorphous track radius was determined as a function of the effective stopping power , i.e., the kinetic energy of atoms per unit length created by ion irradiation (: electronic stopping power, : energy transfer ratio from stopping power to lattice vibration energy).
Sasajima, Yasushi*; Ajima, Naoki*; Osada, Takuya*; Ishikawa, Norito; Iwase, Akihiro*
Nuclear Instruments and Methods in Physics Research B, 314, p.202 - 207, 2013/11
Times Cited Count:9 Percentile:56.12(Instruments & Instrumentation)We used a molecular dynamics method to simulate structural relaxation caused by the high-energy-ion irradiation of single crystal CeO. As the initial condition, we assumed high thermal energy was supplied to the individual atoms within a cylindrical region of nanometer-order diameter located in the center of the single crystal. The potential proposed by Inaba et al. was utilized to calculate interactions between atoms.