Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 83

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Long-axis uniform magnetic field generation using permanent magnets

Iwashita, Yoshihisa*; Kuriyama, Yasutoshi*; Fuwa, Yasuhiro

IEEE Transactions on Applied Superconductivity, 34(5), p.4904504_1 - 4904504_4, 2024/08

A permanent magnet can be used to generate an axisymmetric uniform magnetic field over a long distance. To satisfy Ampere's law, which states that the line-integral value of the magnetic field is zero, a magnetic field region of opposite polarity appears somewhere along the axis while maintaining uniformity in a certain range along the axis. Using this configuration, a magnetic field generator for a Faraday rotation device for laser light was fabricated. This device has a large bore of 30 mm in diameter to handle ultra-high-power lasers and can hold a large crystal disc for Faraday rotation. The irregularity in the central plane is less than 1% within the bore diameter. This configuration can also be applied to long axisymmetric beam transport magnets. This technique can be extended to control the gradient of the magnetic field distributions, such as the focusing field of a klystron.

Journal Articles

Design improvement of bipolar correction magnet with permanent magnets

Kuriyama, Yasutoshi*; Iwashita, Yoshihisa*; Fuwa, Yasuhiro; Terunuma, Nobuhiro*

IEEE Transactions on Applied Superconductivity, 34(5), p.4004005_1 - 4004005_5, 2024/08

We are developing a correction magnet for charged particle beams using permanent magnets. By rotating the rod of the permanent magnet that generates the magnetic field, the magnetic field can be changed to bipolarity. To verify the principle of this bi-polarity change, a prototype was built, and its performance was evaluated. The performance evaluation of the prototype machine revealed that the inhomogeneity of the remanent magnetization of the permanent magnet has a significant effect on the multipole component. To suppress this effect, a compensating magnet with additional anisotropic intermediate poles is being considered.

Journal Articles

Development of combined-function multipole permanent magnet for high-intensity beam transportation

Fuwa, Yasuhiro; Takayanagi, Tomohiro; Iwashita, Yoshihisa*

IEEE Transactions on Applied Superconductivity, 32(6), p.4006705_1 - 4006705_5, 2022/09

 Times Cited Count:0 Percentile:0.00(Engineering, Electrical & Electronic)

Space charge compensation technique using multipole magnetic field components has been proposed to transport high intensity beam in the J-PARC linac. In order to realize this compensation technique, a compact size permanent hybrid multi-pole magnet would be suitable. A magnet system for the simultaneous production of quadrupole and adjustable octupole components using permanent magnet materials and have manufactured a first model of the magnet systems.

Journal Articles

Properties of praseodymium permanent magnet for cryogenic hybrid magnet

Fuwa, Yasuhiro; Iwashita, Yoshihisa*; Kondo, Akihiro*

IEEE Transactions on Applied Superconductivity, 32(6), p.4007304_1 - 4007304_4, 2022/06

 Times Cited Count:0 Percentile:0.00(Engineering, Electrical & Electronic)

High-field magnets are often demanded advanced scientific studies. Although a hybrid coil design comprising Nb-Ti, Nb$$_{3}$$Sn, and HTS (High-Temperature Superconductors) are potential candidates for such application, the costs of Nb$$_{3}$$Sn and HTS are expensive compared with Nb-Ti. By generating an additional field of about 1 T by permanent magnets, the required amounts of superconducting material may be reduced. Magnetic properties of some magnetic materials have been studied by other works at temperatures as low as 100 K. The remanent field of conventional NdFeB magnets decreases at 100 K due to spin reorientation. PrFeB magnets consisting of praseodymium (Pr) instead of neodymium (Nd) do not show such degradation and the coercivity of PrFeB at 100 K is 7 T. In this study, the B-H curve, as a primary magnetic property, of a PrFeB magnet sample was measured in the temperature range down to 4 K. As a result, no decrease in magnetization of the praseodymium magnets, and the coercivity was 10 T.

Journal Articles

High density mapping systems for SRF cavities

Fuwa, Yasuhiro; Iwashita, Yoshihisa*; Kuriyama, Yasutoshi*; Tongu, Hiromu*; Hayano, Hitoshi*; Geng, R. L.*

Proceedings of 20th International Conference on RF Superconductivity (SRF 2021) (Internet), p.323 - 325, 2022/05

In order to evaluate the performance of a superconducting cavity, we are developing a mapping system to measure the distribution of cavity temperature, field emission X-rays, and trapped magnetic flux with high positional resolution. In order to construct a system with high positional resolution, a large number of sensors are required. However, as the number of sensors increases, so does the amount of wiring, which increases the complexity of the wiring in the cryogenic apparatus, and also increases the heat transfer through the wiring, which disturb efficient operation of cavity tests. We are developing an efficient mapping system with a multiplexer that scans the readout signal on the same circuit as the sensor in the cryogenic dewar where the cavity test is conducted. In this presentation, we report the outline and test results of the mapping system under development

Journal Articles

Disk and washer coupled cavity linac design and cold-model for muon linac

Otani, Masashi*; Futatsukawa, Kenta*; Mibe, Tsutomu*; Naito, Fujio*; Hasegawa, Kazuo; Ito, Takashi; Kitamura, Ryo; Kondo, Yasuhiro; Morishita, Takatoshi; Iinuma, Hiromi*; et al.

Journal of Physics; Conference Series, 1350, p.012097_1 - 012097_7, 2019/12

 Times Cited Count:2 Percentile:72.56(Physics, Particles & Fields)

A disk and washer (DAW) coupled cavity linac (CCL) has been developed for a middle velocity part in a muon linac to measure muon anomalous magnetic moment and search for electric dipole moment. I will accelerate muons from $$v/c$$ = $$beta$$ = 0.3 to 0.7 at an operational frequency of 1.3GHz. In this poster, the cavity design, beam dynamics design, and the cold-model measurements will be presented.

Journal Articles

Development of inter-digital H-mode drift-tube linac prototype with alternative phase focusing for a muon linac in the J-PARC muon g-2/EDM experiment

Nakazawa, Yuga*; Iinuma, Hiromi*; Iwata, Yoshiyuki*; Iwashita, Yoshihisa*; Otani, Masashi*; Kawamura, Naritoshi*; Mibe, Tsutomu*; Yamazaki, Takayuki*; Yoshida, Mitsuhiro*; Kitamura, Ryo; et al.

Journal of Physics; Conference Series, 1350, p.012054_1 - 012054_7, 2019/12

 Times Cited Count:6 Percentile:94.35(Physics, Particles & Fields)

An inter-digital H-mode drift-tube linac (IH-DTL) is developed in a muon linac at the J-PARC E34 experiment. IH-DTL will accelerate muons from 0.34 MeV to 4.5 MeV at a drive frequency of 324 MHz. Since IH-DTL adopts an APF method, with which the beam is focused in the transverse direction using the rf field only, the proper beam matching of the phase-space distribution is required before the injection into the IH-DTL. Thus, an IH-DTL prototype was fabricated to evaluate the performance of the cavity and beam transmission. As a preparation of the high-power test, tuners and coupler are designed and fabricated. In this paper, the development of the tuner and the coupler and the result of the low-power measurement will be presented.

Journal Articles

Improvement of correction magnets with permanent magnets

Abe, Masashi*; Iwashita, Yoshihisa*; Terunuma, Nobuhiro*; Fuwa, Yasuhiro; Yako, Tomoki*

Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.700 - 702, 2019/10

Application of permanent magnets to the damping ring of International Linear Collider (ILC) is investigated. Replacing electromagnets with permanent magnets can reduce not only electricity for exciting the coils and maintenance cost of power supplies but also leakage accidents of cooling water. Bending magnets and correction magnets are used in damping ring, but we tried to calculate magnetic field distributions in a correction magnets using permanent magnets with 3D magnetic field code CST studio. The orbit correction magnet requires that the polarity and the intensity of the generated magnetic field be variable in order to correct the beam orbit error. In this research, adjustment of the generated magnetic field was made possible by mounting the rotation mechanism on the permanent magnet in the magnetic circuit in the correction magnet. In addition, in order to suppress deterioration of beam quality due to an incorrect multipole magnetic field, optimization of the shape of the magnetic circuit was performed, and a magnet design that could be installed on a accelerator was established.

Journal Articles

Measurement of radiation resistivity of ferrite permanent magnets irradiated by neutrons

Yako, Tomoki*; Iwashita, Yoshihisa*; Abe, Masashi*; Kurihara, Toshikazu*; Fukuda, Masafumi*; Sato, Masaharu*; Sugimura, Takashi*; Fuwa, Yasuhiro; Takamiya, Koichi*; Iinuma, Yuto*

Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.1003 - 1005, 2019/10

Permanent magnets are used as materials for beam optics elements, but it is known that radiation demagnetization occurs in neodymium magnets and samarium cobalt magnets. However, there is not enough information on the radiation demagnetization of ferrite magnets which is weak in strength but inexpensive. In order to verify the suitability of the ferrite magnet as a beam optics element, radiation demagnetization experiments by neutron irradiation of the ferrite magnet were carried out at the Kyoto University Research Reactor (KUR). In the experiment, neutron fluence up to $$10^{17}$$cm$$^{-2}$$ was irradiated, and no significant demagnetization was detected on the fluence.

Journal Articles

Improvement of inner surface inspection system for superconducting cavities applying image processing technique

Kuriyama, Yasutoshi*; Iwashita, Yoshihisa*; Hirota, Katsuya*; Hayano, Hitoshi*; Fuwa, Yasuhiro

Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.32 - 35, 2019/10

Research and development of gradient enhancement of superconducting RF accelerating cavity is carried out by accelerator research institute in the world, but defects on the cavity surface limit accelerating electric field. Therefore, development of "Inside inspection system for superconducting accelerated cavity" that optically visualizes the state of the inner surface of the superconducting cavity has been carried out, and results have been achieved. In this research, we apply image processing technology that has developed remarkably in recent years to the internal inspection system, and advanced the defect recognition method. Extraction of depth information and image synthesis were performed from images obtained with different focal positions with the camera for internal surface inspection. Also, by performing pattern recognition processing on the images, automatic detection of defects has become possible. By integrating these techniques into the cavity inner surface inspection system, it becomes possible to shorten the scan time for defect search and acquire the defect shape.

Journal Articles

Development of RF input coupler for Inter-digital H-mode drift-tube linac prototype with alternative phase focusing in muon linac

Nakazawa, Yuga*; Iinuma, Hiromi*; Iwashita, Yoshihisa*; Iwata, Yoshiyuki*; Otani, Masashi*; Kawamura, Naritoshi*; Kitamura, Ryo; Kondo, Yasuhiro; Saito, Naohito; Sue, Yuki*; et al.

Proceedings of 16th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.404 - 407, 2019/07

An inter-digital H-mode drift-tube linac (IH-DTL) is developed in a muon linac at the J-PARC E34 experiment. IH-DTL will accelerate muons from 0.34 MeV to 4.5 MeV at a drive frequency of 324 MHz. Since IH-DTL adopts an APF method, with which the beam is focused in the transverse direction using the rf field only, the proper beam matching of the phase-space distribution is required before the injection into the IH-DTL. Thus, an IH-DTL prototype was fabricated to evaluate the performance of the cavity and beam transmission. As a preparation of the high-power test, tuners and coupler are designed and fabricated. In the low power measurement, we decided the loop structure with witch the VSWR = 1.01 and field distortion of within 7%. In this paper, the development of the tuner and the coupler and the result of the low-power measurement will be presented.

Journal Articles

Prototype of an Inter-digital H-mode Drift-Tube Linac for muon linac

Nakazawa, Yuga*; Iinuma, Hiromi*; Iwata, Yoshiyuki*; Iwashita, Yoshihisa*; Otani, Masashi*; Kawamura, Naritoshi*; Mibe, Tsutomu*; Yamazaki, Takayuki*; Yoshida, Mitsuhiro*; Kitamura, Ryo*; et al.

Proceedings of 29th International Linear Accelerator Conference (LINAC 2018) (Internet), p.180 - 183, 2019/01

We have developed an Interdigital H-mode (IH) Drift-Tube Linac (DTL) design with an alternative phase focusing (APF) scheme for a muon linac, in order to measure the anomalous magnetic moment and electric dipole moment (EDM) of muons at the Japan Proton Accelerator Research Complex (J-PARC). The IH-DTL accelerates muons from beta 0.08 to 0.28 at an operational frequency of 324 MHz. The output beam emittances are calculated as 0.315 $$pi$$ and 0.195 $$pi$$ mm mrad in the horizontal and vertical directions, respectively, which satisfies the experimental requirement.

Journal Articles

Performance test of Inter-digital H-mode drift-tube linac prototype with alternative phase focusing for muon linac

Nakazawa, Yuga*; Iinuma, Hiromi*; Iwata, Yoshiyuki*; Iwashita, Yoshihisa*; Otani, Masashi*; Kawamura, Naritoshi*; Kitamura, Ryo*; Kondo, Yasuhiro; Saito, Naohito; Sue, Yuki*; et al.

Proceedings of 15th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.904 - 908, 2018/10

We have developed an Interdigital H-mode (IH) Drift-Tube Linac (DTL) design with an Alternative Phase Focusing (APF) scheme for a muon linac, in order to measure the anomalous magnetic moment and Electric Dipole Moment (EDM) of muons at the Japan Proton Accelerator Research Complex (J-PARC). The IH-DTL accelerates muons from beta 0.08 to 0.28 at an operational frequency of 324 MHz. The output beam emittances are calculated as 0.315 $$pi$$ and 0.195 $$pi$$ mm mrad in the horizontal and vertical directions, respectively, which satisfies the experimental requirement.

Journal Articles

Re-acceleration of ultra cold muon in J-PARC Muon Facility

Kondo, Yasuhiro; Hasegawa, Kazuo; Morishita, Takatoshi; Otani, Masashi*; Futatsukawa, Kenta*; Kawamura, Naritoshi*; Mibe, Tsutomu*; Yamazaki, Takayuki*; Yoshida, Mitsuhiro*; Kitamura, Ryo*; et al.

Proceedings of 9th International Particle Accelerator Conference (IPAC '18) (Internet), p.5041 - 5046, 2018/06

J-PARC is developing the reacceleration system of the ultra slow (30 meV) muon (USM) obtained by two-photon laser resonant ionization of muonium atoms. The muon beam thus obtained has low emittance, meeting the requirement for the g-2/EDM experiment. J-PARC E34 experiment aims to measure the muon anomalous magnetic moment (g-2) with a precision of 0.1 ppm and search for EDM with a sensitivity to $$10^{-21}$$ e cm. The USM's are accelerated to 212 MeV by using a muon dedicated linac to be a ultra cold muon beam. The muon LINAC consists of an RFQ, a inter-digital H-mode DTL, disk and washer coupled cell structures, and disk loaded structures. Proof of the slow muon acceleration scheme is an essential step to realize the world first muon linac. In October 2017, we have succeeded to accelerate slow negative muoniums generated using a simpler muonium source to 89 keV. In this talk, present design of the muon linac and the result of the world first muon acceleration experiment are reported.

Journal Articles

Development of a muon linac for the g-2/EDM experiment at J-PARC

Otani, Masashi*; Kawamura, Naritoshi*; Mibe, Tsutomu*; Naito, Fujio*; Yoshida, Mitsuhiro*; Hasegawa, Kazuo; Ito, Takashi; Kondo, Yasuhiro; Hayashizaki, Noriyosu*; Iwashita, Yoshihisa*; et al.

Proceedings of 28th International Linear Accelerator Conference (LINAC 2016) (Internet), p.1037 - 1041, 2017/05

We are developing a linac dedicated to the muon acceleration. It enables us to measure the muon anomalous magnetic moment with an accuracy of 0.1 ppm and search for electric dipole moment with a sensitivity of 10$$^{-21}$$ cm to explore beyond Standard Model of elementary particle physics. As a first step for demonstration of the muon acceleration, we are developing the source of slow muon with which RFQ acceleration is conducted. This paper describes status of these developments.

Journal Articles

The Muon linac for the precise measurement of muon g-2/EDM at J-PARC

Kondo, Yasuhiro; Hasegawa, Kazuo; Ito, Takashi; Artikova, S.; Otani, Masashi*; Mibe, Tsutomu*; Naito, Fujio*; Yoshida, Mitsuhiro*; Kitamura, Ryo*; Iwashita, Yoshihisa*; et al.

Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.66 - 69, 2016/11

We are developing a muon linac for the measurement of the muon anomalous magnetic moment and search for the muon electric dipole moment to explore beyond the Standard Model of elementary particle physics. This muon linac accelerate from room temperature to 212 MeV with normalized transverse emittances of about 1.5 $$pi$$ mm mrad. The muon linac consists of an ultra-slow muon source, a radio frequency quadrupole (RFQ) linac, an inter-digital H-mode drift tube linac (IH-DTL), a disk and washer coupled cavity linac (DAW CCL), and disk loaded structure (DLS) traveling-wave linac. In this paper, the status of the muon linac development, especially, the beam dynamics simulation is descried.

Journal Articles

Inter-digital H-mode drift-tube linac design with alternative phase focusing for muon linac

Otani, Masashi*; Mibe, Tsutomu*; Yoshida, Mitsuhiro*; Hasegawa, Kazuo; Kondo, Yasuhiro; Hayashizaki, Noriyosu*; Iwashita, Yoshihisa*; Iwata, Yoshiyuki*; Kitamura, Ryo*; Saito, Naohito

Proceedings of 13th Annual Meeting of Particle Accelerator Society of Japan (Internet), p.858 - 862, 2016/11

We have developed an interdigital H-mode (IH) drift-tube linac (DTL) design with an alternative phase focusing (APF) scheme for a muon linac, in order to measure the anomalous magnetic moment and electric dipole moment (EDM) of muons at the Japan Proton Accelerator Research Complex (J-PARC). The IH-DTL accelerates muons from beta 0.08 to 0.28 at an operational frequency of 324 MHz. The output beam emittances are calculated as 0.315 $$pi$$ and 0.195 $$pi$$ mm mrad in the horizontal and vertical directions, respectively, which satisfies the experimental requirement.

Journal Articles

APF IH-DTL design for the muon linac in the J-PARC muon g-2/EDM experiment

Otani, Masashi*; Mibe, Tsutomu*; Yoshida, Mitsuhiro*; Hasegawa, Kazuo; Kondo, Yasuhiro; Hayashizaki, Noriyosu*; Iwashita, Yoshihisa*; Iwata, Yoshiyuki*; Kitamura, Ryo*; Saito, Naohito

Proceedings of 7th International Particle Accelerator Conference (IPAC '16) (Internet), p.1539 - 1542, 2016/06

We have developed an interdigital H-mode (IH) drift-tube linac (DTL) design with an alternative phase focusing (APF) scheme for a muon linac, in order to measure the anomalous magnetic moment and electric dipole moment (EDM) of muons at the Japan Proton Accelerator Research Complex (J-PARC). The IH-DTL accelerates muons from beta 0.08 to 0.28 at an operational frequency of 324 MHz. The output beam emittances are calculated as 0.315 $$pi$$ and 0.195 $$pi$$ mm mrad in the horizontal and vertical directions, respectively, which satisfies the experimental requirement.

Journal Articles

Development of muon linac for the muon g-2/EDM experiment at J-PARC

Otani, Masashi*; Naito, Fujio*; Mibe, Tsutomu*; Yoshida, Mitsuhiro*; Hasegawa, Kazuo; Ito, Takashi; Kondo, Yasuhiro; Hayashizaki, Noriyosu*; Iwashita, Yoshihisa*; Iwata, Yoshiyuki*; et al.

Proceedings of 7th International Particle Accelerator Conference (IPAC '16) (Internet), p.1543 - 1546, 2016/06

We are developing a linac dedicated to the muon acceleration. It enables us to measure the muon anomalous magnetic moment with an accuracy of 0.1 ppm and search for electric dipole moment with a sensitivity of 10-21e cm to explore beyond Standard Model of elementary particle physics. As a first step for demonstration of the muon acceleration, we are developing the source of slow muon with which RFQ acceleration is conducted. This paper described status of these developments.

Journal Articles

Interdigital $$H$$-mode drift-tube linac design with alternative phase focusing for muon linac

Otani, Masashi*; Mibe, Tsutomu*; Yoshida, Mitsuhiro*; Hasegawa, Kazuo; Kondo, Yasuhiro; Hayashizaki, Noriyosu*; Iwashita, Yoshihisa*; Iwata, Yoshiyuki*; Kitamura, Ryo*; Saito, Naohito

Physical Review Accelerators and Beams (Internet), 19(4), p.040101_1 - 040101_8, 2016/04

 Times Cited Count:24 Percentile:83.67(Physics, Nuclear)

We have developed an interdigital H-mode (IH) drift-tube linac (DTL) design with an alternative phase focusing (APF) scheme for a muon linac, in order to measure the anomalous magnetic moment and electric dipole moment (EDM) of muons at the Japan Proton Accelerator Research Complex (J-PARC). The IH-DTL accelerates muons from beta 0.08 to 0.28 at an operational frequency of 324 MHz. The output beam emittances are calculated as 0.315 $$pi$$ and 0.195 $$pi$$ mm mrad in the horizontal and vertical directions, respectively, which satisfies the experimental requirement.

83 (Records 1-20 displayed on this page)