Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Machida, Masahiko; Yamada, Susumu; Kim, M.; Tanaka, Satoshi*; Tobita, Yasuhiro*; Iwata, Ayako*; Aoki, Yuto; Aoki, Kazuhisa; Yanagisawa, Kenichi*; Yamaguchi, Takashi; et al.
RIST News, (70), p.3 - 22, 2024/09
Inside the Fukushima Daiichi Nuclear Power Plant (1F), there are many locations with high radiation levels due to contamination by radioactive materials that leaked from the reactor. These pose a significant obstacle to the smooth progress of decommissioning work. To help solve this issue, the Japan Atomic Energy Agency (JAEA), under a subsidy from the Ministry of Economy, Trade, and Industry's decommissioning and contaminated water management project, is conducting research and development on digital technologies to improve the radiation environment inside the decommissioning site. This project, titled "Development of Technology to Improve the Environment Inside Reactor Buildings (Enhancing Digital Technology for Environment and Source Distribution to Reduce Radiation Exposure)," began in April of FY 2023. In this project, the aim is to develop three interconnected systems: FrontEnd, Pro, and BackEnd. The FrontEnd system, based on the previously developed 3D-ADRES-Indoor (prototype) from FY 2021-2022, will be upgraded to a high-speed digital twin technology usable on-site. The Pro system will carry out detailed analysis in rooms such as the new office building at 1F, while the BackEnd system will serve as a database to centrally manage the collected and analyzed data. This report focuses on the FrontEnd system, which will be used on-site. After point cloud measurement, the system will quickly create a 3D mesh model, estimate the radiation source from dose rate measurements, and refine the position and intensity of the estimated source using recalculation techniques (re-observation instructions and re-estimation). The results of verification tests conducted on Unit 5 are also presented. Furthermore, the report briefly discusses the future research and development plans for this project.
Ishikawa, Takatsugu*; Fujimura, Hisako*; Fukasawa, Hiroshi*; Hashimoto, Ryo*; He, Q.*; Honda, Yuki*; Hosaka, Atsushi; Iwata, Takahiro*; Kaida, Shun*; Kasagi, Jirota*; et al.
Physical Review C, 101(5), p.052201_1 - 052201_6, 2020/05
Times Cited Count:4 Percentile:38.05(Physics, Nuclear)Zegers, R. G. T.*; Sumihama, Mizuki*; Ahn, D. S.*; Ahn, J. K.*; Akimune, Hidetoshi*; Asano, Yoshihiro; Chang, W. C.*; Dat, S.*; Ejiri, Hiroyasu*; Fujimura, Hisako*; et al.
Physical Review Letters, 91(9), p.092001_1 - 092001_4, 2003/08
Times Cited Count:128 Percentile:94.65(Physics, Multidisciplinary)no abstracts in English
Nakano, Takashi*; Ahn, D. S.*; Ahn, J. K.*; Akimune, Hidetoshi*; Asano, Yoshihiro; Chang, W. C.*; Date, S.*; Ejiri, Hiroyasu*; Fujimura, Hisako*; Fujiwara, Mamoru; et al.
Physical Review Letters, 91(1), p.012002_1 - 012002_4, 2003/07
Times Cited Count:1013 Percentile:99.84(Physics, Multidisciplinary)no abstracts in English
Kataoka, Shinichi*; Kawahara, Kenichi*; Matsunaga, Kenichi*; Ishihara, Yoshinao*; Neyama, Atsushi*; Nakagawa, Koichi*; Iwata, Hiroshi*; Mori, Koji*
JNC TJ8400 2001-037, 33 Pages, 2001/03
no abstracts in English
Kataoka, Shinichi*; Kawahara, Kenichi*; Matsunaga, Kenichi*; Ishihara, Yoshinao*; Neyama, Atsushi*; Nakagawa, Koichi*; Iwata, Hiroshi*; Mori, Koji*
JNC TJ8400 2001-036, 202 Pages, 2001/03
The newest literature information in the foreign countries was researched, and this research showed the basic concept of the coupling analysis code to realize coupling analysis in near field of the geological disposal system. The outline of this research is shown in the following. (1)The combination of M (Mechanical) and (Chemistry) is placed on the weak relations, Because coupling analysis of the United States Yucca Mountain limits a site and the specifications of engineered barrier. (2)One of the purposes of this research is information collecting about coupling analysis code NUFT-C adopted in the United States Yucca Mountain. Therefore, we carried out an information exchange with the United States Lawrence Livermore National Laboratory. We could collect the development purpose of analysis code, key function, and information such as a test case analysis. (3)The investigation of the analysis code concerned with the newest information of coupling analysis which contains the geochemistry process and 2 phase system was done based on the public information for the purpose of building some concept of the coupling analysis code, the extraction of the development issues. It could be understood about the future development strategy and the precaution in addition to a phenomenon to deal with, the current status of the coupling analysis technique as a result of the investigation. (4)It was cleared about the mission of the coupling analysis code and the requirement items (function, quality) by this research. Then, some development options were presented. (5)It was studied about the procedure of developing it to satisfy the above requirement toward the conditions that a site isn't selected, the short development. The tool (Diffpack) which could cope with the speed-up of the calculation time and visualization flexibly was effective, and it was summarized about the test case by using this tool, the key function of this tool as that result.
Kinugawa, Junichi*; Fujita, Mitsutane*; Noda, Tetsuji*; Tsuji, Hirokazu; Kaji, Yoshiyuki; Sakino, Takao*; Tachi, Yoshiaki*; Kaneda, Kenichiro*; Mashiko, Shinichi*; Shimura, Kazuki*; et al.
Proceedings of 9th German-Japanese Workshop on Chemical Information, p.134 - 135, 2000/00
no abstracts in English
Okadome, Yoshihiro*; Iwata, Masayuki*; Arai, Tsuyoshi*; Nagayama, Katsuhisa*; Suzuki, Tatsuya*; Horiguchi, Kenichi; Sugaya, Atsushi
no journal, ,
no abstracts in English
Aoyama, Takafumi; Ito, Chikara; Naito, Hiroyuki; Iwata, Yoshihiro; Harano, Hideki*; Okazaki, Koki*; Araki, Yoshio*; Watanabe, Kenichi*; Iguchi, Tetsuo*; Takegawa, Nobuyuki*; et al.
no journal, ,
no abstracts in English
Ito, Chikara; Iwata, Yoshihiro; Aoyama, Takafumi; Harano, Hideki*; Watanabe, Kenichi*; Iguchi, Tetsuo*
no journal, ,
no abstracts in English
Iwata, Masayuki*; Shimokawa, Kosuke*; Arai, Tsuyoshi*; Nagayama, Katsuhisa*; Suzuki, Tatsuya*; Horiguchi, Kenichi; Sugaya, Atsushi
no journal, ,
no abstracts in English
Arai, Tsuyoshi*; Sato, Hayato*; Saito, Akihito*; Iwata, Masayuki*; Horiguchi, Kenichi; Sugaya, Atsushi
no journal, ,
no abstracts in English
Iwata, Hajime*; Kawamoto, Yuji*; Sakamaki, Keiko; Yasuda, Kenichiro; Onuki, Toshihiko; Utsunomiya, Satoshi*
no journal, ,
no abstracts in English
Saito, Akihito*; Iwata, Masayuki*; Sato, Hayato*; Arai, Tsuyoshi*; Nagayama, Katsuhisa*; Suzuki, Tatsuya*; Horiguchi, Kenichi; Sugaya, Atsushi
no journal, ,
no abstracts in English
Iwata, Masayuki*; Okadome, Yoshihiro*; Arai, Tsuyoshi*; Nagayama, Katsuhisa*; Suzuki, Tatsuya*; Horiguchi, Kenichi; Sugaya, Atsushi
no journal, ,
no abstracts in English
Wadachi, Hiroki*; Kunieda, Takekazu*; Sakashita, Tetsuya; Kawai, Kiyoshi*; Iwata, Kenichi*; Nakahara, Yuichi*; Hamada, Nobuyuki*; Koseki, Shigenobu*; Yamamoto, Kazutaka*; Kobayashi, Yasuhiko; et al.
no journal, ,
We studied the effects of the exposure of extreme environments on life-time and breeding ability of tardigrade to reveal the possibility of multi-cellular organism existences in the outerspace. A life time of animals is the shortest in the heavy-ion exposed animals than any other stressors. There were significant decrease in the number of egg-laying and hatching rate between irradiated and non-irradiated animals. However, we found the next generation in all experimental conditions. Our findings suggest that tardigrades exposed to even any extreme environments could have a descendant.
Horikawa, Daiki*; Kunieda, Takekazu*; Abe, Wataru*; Koshikawa, Shigeyuki*; Nakahara, Yuichi*; Watanabe, Masahiko*; Iwata, Kenichi*; Sakashita, Tetsuya; Hamada, Nobuyuki*; Higashi, Seigo*; et al.
no journal, ,
We report the first successful rearing of the herbivorous tardigrade, , by supplying a green alga
as a food. The reared individuals of this species had an anhydrobiotic capacity throughout their life cycle, from eggs, to juveniles, and to adults. Reared adults, while in an anhydrobiotic state, were tolerant to temperatures -196
C and 100
C. Furthermore, they were shown to be tolerant to the exposure to 99.8% acetonitrile, 1 GPa of hydrostatic pressure, or 5000 Gy of He ion radiation. We will report the details of these results, along with the description of their life history. Due to the observed tolerance to such extreme environmental conditions, we propose R. varieornatus to be included as a suitable model for astrobiological studies of multicellular organisms.
Aoyama, Takafumi; Ito, Chikara; Araki, Yoshio; Naito, Hiroyuki; Iwata, Yoshihiro; Okazaki, Koki*; Harano, Hideki*; Watanabe, Kenichi*; Iguchi, Tetsuo*; Takegawa, Nobuyuki*; et al.
no journal, ,
no abstracts in English
Iwata, Masayuki*; Arai, Tsuyoshi*; Nagayama, Katsuhisa*; Suzuki, Tatsuya*; Horiguchi, Kenichi; Sugaya, Atsushi
no journal, ,
no abstracts in English
Okadome, Yoshihiro*; Kobayashi, Atsushi*; Arai, Tsuyoshi*; Iwata, Masayuki*; Suzuki, Tatsuya*; Horiguchi, Kenichi; Sugaya, Atsushi
no journal, ,
no abstracts in English