Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Gunji, Satoshi; Araki, Shohei; Izawa, Kazuhiko; Suyama, Kenya
Annals of Nuclear Energy, 209, p.110783_1 - 110783_7, 2024/12
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Since the compositions and properties of the fuel debris are uncertain, critical experiments are required to validate calculation codes and nuclear data used for the safety evaluation. For this purpose, the Japan Atomic Energy Agency (JAEA) has been modifying a critical assembly called "STACY." The first criticality of the modified STACY is scheduled for spring 2024. This paper reports the consideration results of the specifications of the basic core configurations of the modified STACY at the first criticality. We prepared two types of gird plates with different neutron moderation conditions (their intervals are 1.50 cm and 1.27 cm). However, there is a limitation on the number of available UO fuel rods. The core configurations for the first criticality satisfying these experimental constraints were designed by computational analysis. A cylindrical core configuration with a 1.50 cm grid plate close to the optimum moderation condition needs 253 fuel rods to reach criticality. As to the 1.27 cm grid plate, we considered core configurations with 2.54 cm intervals by using doubled pitches of the grid plate. It will need 213 fuel rods for the criticality. In addition, we considered the experimental core configuration with steel/concrete simulant rods to simulate fuel debris conditions. This paper shows these core configurations and their evaluated specifications.
Vu, TheDang*; Shishido, Hiroaki*; Aizawa, Kazuya; Oku, Takayuki; Oikawa, Kenichi; Harada, Masahide; Kojima, Kenji M*; Miyajima, Shigeyuki*; Soyama, Kazuhiko; Koyama, Tomio*; et al.
IEEJ Transactions on Electrical and Electronic Engineering, 19(11), p.1888 - 1894, 2024/11
Times Cited Count:0 Percentile:0.00(Engineering, Electrical & Electronic)Vu, TheDang*; Shishido, Hiroaki*; Aizawa, Kazuya; Oku, Takayuki; Oikawa, Kenichi; Harada, Masahide; Kojima, Kenji M*; Miyajima, Shigeyuki*; Soyama, Kazuhiko; Koyama, Tomio*; et al.
Journal of Physics; Conference Series, 2776, p.012009_1 - 012009_9, 2024/06
Gunji, Satoshi; Araki, Shohei; Izawa, Kazuhiko; Suyama, Kenya
Proceedings of International Conference on Physics of Reactors (PHYSOR 2024) (Internet), p.227 - 236, 2024/04
It is considered that a large amount of fuel debris was generated in the TEPCO's Fukushima Dai-ichi Nuclear Power Station accident. In particular, the criticality characteristics of the fuel debris, including concrete components, which are products of molten core-concrete interaction (MCCI), have not been well investigated. In this study, to plan physical simulation in critical experiments at the critical assembly using pseudo fuel debris samples including concrete, we evaluated the sensitivity to the effective multiplication factor of the Si and Ca cross sections in the concrete-simulant sample based on the results of elemental analysis of the prototype. These sensitivity calculations were carried out for each sample loading method and composition. We focused on the energy profile of the sensitivity of the Ca capture reaction and confirmed that the shape of the sensitivity energy profile changed depending on the sample compositions and neutron moderation conditions. We could know the characteristics of each experimental method by clarifying the trends of sensitivity obtained in different experimental cases. It was found that increasing the amount of concrete in the samples and changing the neutron moderation conditions in the experimental core configurations produced similar changes in the shape of the sensitivity energy profile. This result shows the possibility of reproducing the characteristics of MCCI products through practical critical experiments using concrete materials that do not contain fissile materials.
Ishida, Takekazu*; Vu, TheDang*; Shishido, Hiroaki*; Aizawa, Kazuya; Oku, Takayuki; Oikawa, Kenichi; Harada, Masahide; Kojima, Kenji M*; Miyajima, Shigeyuki*; Koyama, Tomio*; et al.
Journal of Low Temperature Physics, 214(3-4), p.152 - 157, 2024/02
Times Cited Count:0 Percentile:0.00(Physics, Applied)Gunji, Satoshi; Yoshikawa, Tomoki; Araki, Shohei; Izawa, Kazuhiko; Suyama, Kenya
Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 8 Pages, 2023/10
Since the compositions and properties of the fuel debris are uncertain, critical experiments are required to validate calculation codes and nuclear data used for the safety evaluation. For this purpose, JAEA has been modifying a critical assembly called "STACY". The first criticality of the new STACY is scheduled for spring 2024. This paper reports the consideration results of the core configurations of the new STACY at the first criticality. We prepared two sets of gird plates with different neutron moderation conditions (their intervals are 1.50 cm and 1.27 cm). However, there is a limitation on the number of available UO fuel rods. In addition, we would like to set the critical water heights for the first criticality at around 95 cm. This is to avoid the reactive effect of the aluminum alloy middle grid plates (Approx. 98 cm high). The core configurations for the first criticality satisfying these conditions were constructed by computational analysis. A square core configuration with the 1.50 cm grid plate that is close to the optimum moderation condition needs 261 fuel rods to reach criticality. As to the 1.27 cm grid plate, we considered two core configurations with 1.80 cm intervals by using a checkerboard arrangement. One of them has two regions core configuration with 1.27 and 1.80 cm intervals, and the other has only 1.80 cm intervals. They need 341 and 201 fuel rods for the criticality, respectively. This paper shows these three core configurations and their calculation models.
Suyama, Kenya; Ueki, Taro; Gunji, Satoshi; Watanabe, Tomoaki; Araki, Shohei; Fukuda, Kodai; Yamane, Yuichi; Izawa, Kazuhiko; Nagaya, Yasunobu; Kikuchi, Takeo; et al.
Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 6 Pages, 2023/10
To remove and store safely the fuel debris generated by the severe accident of the Fukushima Daiichi Nuclear Power Station in 2011 is one of the most important and challenging topics for decommissioning of the damaged reactors in Fukushima. To validate the adopted method for the evaluation of criticality safety control of the fuel debris through comparison with the experimental data obtained by the criticality experiments, the Nuclear Regulation Authority (NRA) of Japan funds a research and development project which was entrusted to the Nuclear Safety Research Center (NSRC) of Japan Atomic Energy Agency (JAEA) from 2014. In this project, JAEA has been conducting such activities as i) comprehensive computation of the criticality characteristics of the fuel debris and making database (criticality map of the fuel debris), ii) development of new continuous energy Monte Carlo code, iii) evaluation of criticality accident and iv) modification of the critical assembly STACY for the experiments for validation of criticality safety control methodology. After the last ICNC2019, the project has the substantial progress in the modification of STACY which will start officially operation from May 2024 and the development of the Monte Carlo Code "Solomon" suitable for the criticality calculation for materials having spatially random distribution complies with the power spectrum. We present the whole picture of this research and development project and status of each technical topics in the session.
Gunji, Satoshi; Araki, Shohei; Arakaki, Yu; Izawa, Kazuhiko; Suyama, Kenya
Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 9 Pages, 2023/10
JAEA has been modifying a critical assembly called STACY from a solution system to a light-water moderated heterogeneous system to validate computation results of criticality characteristics of fuel debris generated in the accident at TEPCO's Fukushima Daiichi Nuclear Power Station. To experimentally simulate the composition and characteristics of fuel debris, we will prepare several grid plates which make particular neutron moderation conditions and a number of rod-shaped concrete and stainless-steel materials. Experiments to evaluate fuel debris's criticality characteristics are scheduled using these devices and materials. This series of STACY experiments are planned to measure the reactivity of fuel debris-simulated samples, measure the critical mass of core configurations containing structural materials such as concrete and stainless steels, and the change in critical mass when their arrangement becomes non-uniform. Furthermore, two divided cores experiments are scheduled that statically simulate fuel debris falling, and also scheduled that subcriticality measurement experiments with partially different neutron moderation conditions. The experimental plans have been considered taking into account some experimental constraints. This paper shows the schedule of these experiments, as well as the computation results of the optimized core configurations and expected results for each experiment.
Sono, Hiroki; Izawa, Kazuhiko; Yoritsune, Tsutomu; Suyama, Kenya; Tonoike, Kotaro
Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 7 Pages, 2023/10
Japan Atomic Energy Agency (JAEA) has constructed and operated nine critical assemblies. Of these nine facilities as of 2023, four have already been dismantled, four are under decommissioning, and only STACY is active but under temporally shutdown. STACY is scheduled to restart in 2024 after core modification from a "critical assembly using uranium nitrate solution fuel" to a "general-purpose critical assembly using uranium fuel rods and light-water moderator." The immediate objective of new STACY is to acquire criticality data for fuel debris removal from the damaged reactors in Fukushima-Daiichi Nuclear Power Plant. After the critical experiment program regarding fuel debris, the new STACY is expected to be used for various R&D on next-generation power reactors and others. In addition, the new STACY will serve as an educational and training reactor. These activities are useful not only for Japan but also for international collaborative research and joint use.
Kobayashi, Fuyumi; Fukaya, Hiroyuki; Izawa, Kazuhiko; Kida, Takashi; Sono, Hiroki; Suyama, Kenya
Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 7 Pages, 2023/10
In the criticality experiment in the new STACY, pseudo fuel debris samples are used to acquire data for validation of the system used for 1F debris criticality safety assessment. The pseudo fuel debris is a pellet with a diameter of 8 mm and a height of 10 mm containing uranium oxide and structural materials (iron, silicon, zirconium, etc.). The pellets are made by mixing, pressing and sintering uranium dioxide powder and structural materials powder. The UO powder uses the same composition of uranium as the STACY driver fuel rods, in order to reduce the errors in fuel composition. The pseudo fuel debris fabrication devices and analysis equipment are installed at the BECKY in order to evaluate the critical properties of fuel debris with high accuracy in dimension and analysis. This equipment is located in the same laboratory and can quickly respond to experimental needs such as preparation of the pseudo fuel debris and analysis before and after irradiation.
Araki, Shohei; Gunji, Satoshi; Arakaki, Yu; Yoshikawa, Tomoki; Murakami, Takahiko; Kobayashi, Fuyumi; Izawa, Kazuhiko; Suyama, Kenya
Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 8 Pages, 2023/10
New experiments simulating fuel debris in the new criticality assembly, STACY, are designed to contribute to the validation of criticality calculations for criticality control of the fuel debris in the Fukushima Daiichi Nuclear Power Plant accident. In the new STACY experiment, a two-region core consisting of a driver region and a test region was investigated in order to configure a debris-simulated core with under-moderation condition (lattice pitch 1.27-cm) having the constraint of available fuel rod number. The test region with a 1.27-cm lattice pitch is surrounded by the driver region, in which fuel rods are arranged in a checkerboard pattern on a 1.27-cm lattice plate, with a 1.80-cm lattice pitch. Neutron spectra and sensitivity were calculated by using MCNP6 and ENDF/B-VII. The core which has a 1717 test region with 373 fuel rods is the largest two-region core under the constraint. It was found that the core which has a 1717 test region can simulate the neutron spectra of under-moderation condition in a 1313 region inside the test region with the root-mean square percentage error of less than 5%. It was also confirmed that the sensitivity of Si and Ca (n,) reactions when the concrete simulant, was loaded could be simulated.
Kawaguchi, Maho*; Shiba, Shigeki*; Iwahashi, Daiki*; Okawa, Tsuyoshi*; Gunji, Satoshi; Izawa, Kazuhiko; Suyama, Kenya
Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 8 Pages, 2023/10
The Nuclear Regulation Authority (NRA) has been working on an experimental approach for evaluating the criticality of fuel debris produced by the Fukushima Daiichi Nuclear Power Plant (FDNP) accident since 2014, collaborating with the Japan Atomic Energy Agency (JAEA). As part of the approach, JAEA has modified the STAtic experiment Critical facilitY (STACY) for critical experiments to evaluate characteriscs of pseudo-fuel debris. As the preliminary analyses, we verified critical characteristics with major nuclear data libraries for the proposed core configuration patterns. The three-dimensional continuous-energy Monte Carlo neutron and photon transport code, SERPENT-V2.2.0 was used with the latest JENDL, JENDL-5. As a result, larger multiplication factors of JENDL-5 across the modified STACY core configuration patterns were evaluated in comparison to the other libraries. And, H scattering and U fission sensitivity coefficients of JENDL-5 were different from those of the other libraries. Comparing among analyses with those libraries, the updated S(, ) of JENDL-5 might affect the result of critical characteristics in the critical analyses for the modified STACY core configuration.
Araki, Shohei; Gunji, Satoshi; Arakaki, Yu; Murakami, Takahiko; Yoshikawa, Tomoki; Hasegawa, Kenta; Tada, Yuta; Izawa, Kazuhiko; Suyama, Kenya
Proceedings of 4th Reactor Physics Asia Conference (RPHA2023) (Internet), 4 Pages, 2023/10
To conduct integrated thermal power measurements for the performance test of the modified STACY, we re-analyzed the experimental data measured in the solution fuel STACY using the activation method. We validated its feasibility under the limited number of activation detectors. The re-analyzed results of the activation method by using MVP and PHITS with JENDL-4.0 indicated that the effect of the difference of the position between activation detectors was small enough, and the results agreed with that of the fission product analysis within almost 10%. It is conceivable that the activation method could be adopted instead of the fission product analysis.
Shishido, Hiroaki*; Vu, TheDang*; Aizawa, Kazuya; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Soyama, Kazuhiko; Miyajima, Shigeyuki*; et al.
Journal of Applied Crystallography, 56(4), p.1108 - 1113, 2023/08
Times Cited Count:1 Percentile:37.25(Chemistry, Multidisciplinary)Shiba, Shigeki*; Iwahashi, Daiki*; Okawa, Tsuyoshi*; Gunji, Satoshi; Izawa, Kazuhiko; Suyama, Kenya
Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 9 Pages, 2023/05
The Nuclear Regulation Authority (NRA) has tackled the experimental approach for determining the criticality of pseudo-fuel debris plausibly simulating actual fuel debris since 2014, collaborating with the Japan Atomic Energy Agency. To elucidate the characteristics of the pseudo-fuel debris, the Japan Atomic Energy Agency modified the STACY (STAtic experiment Critical facilitY) to conduct critical experiments simulating fuel debris. Thus, we proposed three types of modified STACY core configurations. In critical experiments in the modified STACY core, it is important to judge whether the proposed modified STACY core configurations are representative of molten core-concrete interaction debris or not. In this study, we built pseudo-fuel debris models considering a volume ratio of pseudo-fuel debris to moderation (V/V) and calculated uncertainty-based similarity values (C) between the modified STACY core configurations and pseudo-fuel debris models using Tools for Sensitivity and Uncertainty Analysis Methodology Implementation-Indices and Parameters (TSUNAMI-IP) in SCALE 6.2. Consequently, the modified STACY core configuration loading structure rods we proposed completely resulted in high similarity to the pseudo-fuel debris models through V/V values. The main contributions to C values were U , U , and Fe (n,), except for the pseudo-fuel debris model, including extremely high concrete components.
Gunji, Satoshi; Araki, Shohei; Suyama, Kenya; Izawa, Kazuhiko
Proceedings of International Conference on Physics of Reactors 2022 (PHYSOR 2022) (Internet), 10 Pages, 2022/05
The fuel debris is expected to have not only heterogeneous but also non-uniform compositions. Therefore, the calculation method used in their criticality management is required to be validated experimentally. In this study, several core configurations of a new critical assembly "STACY" of JAEA with non-uniform arrangements of uranium oxide fuel rods, concrete rods and stainless steel rods, which are components of the fuel debris, were studied. In each case, the median value of 100 sample patterns was larger than the mean effective multiplication factor. It was also confirmed that there are differences in the effective multiplication factor of more than one dollar by the pattern changing, and that the neutron spectra can change significantly by changing the local neutron moderation conditions. In particular, the effective multiplication factor became smaller when over-moderated regions with large water-to-fuel ratios were formed in the core configurations due to increases in thermal neutron absorption. Such criticality experiments with non-uniform arrangements of multiple compositions will be useful to evaluate the validity of the calculation code.
Shishido, Hiroaki*; Nishimura, Kazuma*; Vu, TheDang*; Aizawa, Kazuya; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Soyama, Kazuhiko; et al.
IEEE Transactions on Applied Superconductivity, 31(9), p.2400505_1 - 2400505_5, 2021/12
Times Cited Count:0 Percentile:0.00(Engineering, Electrical & Electronic)In this study, we employed a superconducting detector, current-biased kinetic-inductance detector (CB-KID) for neutron imaging using a pulsed neutron source. We employed the delay-line method, and high spatial resolution imaging with only four reading channels was achieved. We also performed wavelength-resolved neutron imaging by the time-of-flight method. We obtained the neutron transmission images of a Gd-Al alloy sample, inside which single crystals of GdAl were grown, using the delay-line CB-KID. Single crystals were well imaged, in both shapes and distributions, throughout the Al-Gd alloy. We identified Gd nuclei via neutron transmissions that exhibited characteristic suppression above the neutron wavelength of 0.03 nm. In addition, the Gd resonance dip, a dip structure of the transmission caused by the nuclear reaction between an isotope and neutrons, was observed even when the number of events was summed over a limited area of 15 m 12 m. Gd selective imaging was performed using the resonance dip of Gd, and it showed clear Gd distribution even with a limited neutron wavelength range of 1 pm.
Vu, TheDang; Shishido, Hiroaki*; Aizawa, Kazuya; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Oku, Takayuki; Soyama, Kazuhiko; Miyajima, Shigeyuki*; et al.
Nuclear Instruments and Methods in Physics Research A, 1006, p.165411_1 - 165411_8, 2021/08
Times Cited Count:1 Percentile:15.62(Instruments & Instrumentation)Yonomoto, Taisuke; Nakashima, Hiroshi*; Sono, Hiroki; Kishimoto, Katsumi; Izawa, Kazuhiko; Kinase, Masami; Osa, Akihiko; Ogawa, Kazuhiko; Horiguchi, Hironori; Inoi, Hiroyuki; et al.
JAEA-Review 2020-056, 51 Pages, 2021/03
A group named as "The group for investigation of reasonable safety assurance based on graded approach", which consists of about 10 staffs from Sector of Nuclear Science Research, Safety and Nuclear Security Administration Department, departments for management of nuclear facility, Sector of Nuclear Safety Research and Emergency Preparedness, aims to realize effective graded approach (GA) about management of facilities and regulatory compliance of JAEA. The group started its activities in September, 2019 and has had discussions through 10 meetings and email communications. In the meetings, basic ideas of GA, status of compliance with new regulatory standards at each facility, new inspection system, etc were discussed, while individual investigation at each facility were shared among the members. This report is compiled with expectation that it will help promote rational and effective safety management based on GA by sharing contents of the activity widely inside and outside JAEA.
Vu, TheDang; Shishido, Hiroaki*; Kojima, Kenji M*; Koyama, Tomio*; Oikawa, Kenichi; Harada, Masahide; Miyajima, Shigeyuki*; Oku, Takayuki; Soyama, Kazuhiko; Aizawa, Kazuya; et al.
Superconductor Science and Technology, 34(1), p.015010_1 - 015010_10, 2021/01
Times Cited Count:4 Percentile:29.17(Physics, Applied)