Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kubo, Kotaro; Zheng, X.; Tanaka, Yoichi; Tamaki, Hitoshi; Sugiyama, Tomoyuki; Jang, S.*; Takata, Takashi*; Yamaguchi, Akira*
Proceedings of the Institution of Mechanical Engineers, Part O; Journal of Risk and Reliability, 237(5), p.947 - 957, 2023/10
Times Cited Count:5 Percentile:56.65(Engineering, Multidisciplinary)Probabilistic risk assessment (PRA) is a method used to assess the risks associated with large and complex systems. However, the timing at which nuclear power plant structures, systems, and components are damaged is difficult to estimate if the risk of an external event is evaluated using conventional PRA based on event trees and fault trees. A methodology coupling thermal-hydraulic analysis with external event simulations using Risk Assessment with Plant Interactive Dynamics (RAPID) is therefore proposed to overcome this limitation. A flood propagation model based on Bernoulli's theorem was applied to represent internal flooding in the turbine building of the pressurized water reactor. Uncertainties were also taken into account, including the flow rate of the floodwater source and the failure criteria for the mitigation systems. The simulated recovery actions included the operator isolating the floodwater source and using a drainage pump; these actions were modeled using several simplifications. Overall, the results indicate that combining isolation and drainage can reduce the conditional core damage probability upon the occurrence of flooding by approximately 90%.
Kubo, Kotaro; Jang, S.*; Takata, Takashi*; Yamaguchi, Akira*
Journal of Nuclear Science and Technology, 60(4), p.359 - 373, 2023/04
Times Cited Count:8 Percentile:83.23(Nuclear Science & Technology)Probabilistic risk assessment (PRA) is an essential approach to improving the safety of nuclear power plants. However, this method includes certain difficulties, such as modeling of combinations of multiple hazards. Seismic-induced flooding scenario includes several core damage sequences, i.e., core damage caused by earthquake, flooding, and combination of earthquake and flooding. The flooding fragility is time-dependent as the flooding water propagates from the water source such as a tank to compartments. Therefore, dynamic PRA should be used to perform a realistic risk analysis and quantification. This study analyzed the risk of seismic-induced flooding events by coupling seismic, flooding, and thermal-hydraulics simulations, considering the dependency between multiple hazards explicitly. For requirements of safety improvement, especially in light of the Fukushima Daiichi Nuclear Power Plant accident, sensitivity analysis was performed on the seismic capacity of systems, and the effectiveness of alternative steam generator injection by a portable pump was estimated. We demonstrate the use of this simulation-based dynamic PRA methodology to evaluate the risk induced by a combination of hazards.
Yamanaka, Takamitsu*; Rahman, S.*; Nakamoto, Yuki*; Hattori, Takanori; Jang, B. G.*; Kim, D. Y.*; Mao, H.-K.*
Journal of Physics and Chemistry of Solids, 167, p.110721_1 - 110721_10, 2022/08
Times Cited Count:1 Percentile:9.25(Chemistry, Multidisciplinary)High-pressure neutron diffraction proved that MnFeO and MnFeO spinels transform into CaMnO-type structure above 18 GPa and 14 GPa, respectively. The transition pressure of MnFeO solutions decreases with increasing Mn content. Synchrotron X-ray Mssbauer experiments revealed that Fe and Fe distribution at the tetrahedral (A) and octahedral (B) sites in the spinel structure changes with pressure. MnFeO and MnFeO spinels are ferrimagnetic and the CaMnO-type phase is paramagnetic. The temperature dependence of resistivity indicates that both spinels are semiconductors wherein electrons hop between cations at the A and B sites. A pressure-induced shortening of B-B distance promoted conduction via greater electron mobility between adjacent B cations. The Fe and Fe occupancies at the B sites in MnFeO are much larger than those in MnFeO. The CaMnO-type phase is metallic. Theoretical calculation confirmed the metallic character and Fe d-orbitals strongly renormalized compared to Mn d-orbitals.
Kubo, Kotaro; Jang, S.*; Takata, Takashi*; Yamaguchi, Akira*
Journal of Nuclear Science and Technology, 59(3), p.357 - 367, 2022/03
Times Cited Count:6 Percentile:56.19(Nuclear Science & Technology)Dynamic probabilistic risk assessment (PRA), which handles epistemic and aleatory uncertainties by coupling the thermal-hydraulics simulation and probabilistic sampling, enables a more realistic and detailed analysis than conventional PRA. However, enormous calculation costs are incurred by these improvements. One solution is to select an appropriate sampling method. In this paper, we applied the Monte Carlo, Latin hypercube, grid-point, and quasi-Monte Carlo sampling methods to the dynamic PRA of a station blackout sequence in a boiling water reactor and compared each method. The result indicated that quasi-Monte Carlo sampling method handles the uncertainties most effectively in the assumed scenario.
Kosaka, Wataru; Uchibori, Akihiro; Takata, Takashi; Yanagisawa, Hideki*; Watanabe, Akira*; Jang, S.*
Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19) (Internet), 11 Pages, 2022/03
For the safety assessment of a steam generator (SG) in a sodium-cooled fast reactor, the analysis code LEAP-III can evaluate the water leak rate during the long-term event progress including the tube failure propagation triggered by an occurrence of a small water leak in a failed heat transfer tube in SG. The LEAP-III has the advantage in completing the calculation with low computational cost since it consists of semi-empirical formulae and one-dimensional equations of conservation. However, an evaluation model of temperature distribution by the reacting jet provides wider high temperature region than the experimental data. As a result, LEAP-III shows excessive conservativeness in some case. A Lagrangian particle method code based on engineering approaches has been developed in order to improve this model to get more realistic temperature distribution. In this method, the jet behavior and chemical reaction are simulated using Newton's equation of motion with several engineering approximations instead of solving multi-dimension multiphase thermal hydraulic equations with sodium-water reaction. In this study, interparticle interaction force model was added, and also the chemical reaction and gas-liquid heat transfer evaluation models were improved. We conducted a test analysis, and compared the results by this particle method with the ones by SERAPHIM, that is a mechanistic analysis code for multi-dimensional multiphase flow considering compressibility and sodium-water reaction. Through this test analysis, it confirmed that this particle method has the basic capability to get a realistic temperature distribution with low computational cost, and also to predict tube failure occurrence by coupled with LEAP-III.
Kosaka, Wataru; Uchibori, Akihiro; Yanagisawa, Hideki*; Takata, Takashi; Jang, S.*
Nihon Kikai Gakkai Rombunshu (Internet), 88(905), p.21-00310_1 - 21-00310_9, 2022/01
If a pressurized water/water-vapor leaks from a heat transfer tube in a steam generator (SG) in a sodium-cooled fast reactor (SFR), sodium-water reaction forms high-velocity, high-temperature, and corrosive jet. It would damage the other tubes and might propagate the tube failure in the SG. Thus, it is important to evaluate the effect of the tube failure propagation for safety assessment of SFR. The computational code LEAP-III can evaluate water leak rate during the tube failure propagation with short calculation time, since it consists of empirical formulae and one-dimensional equations of conservation. One of the empirical models, temperature distribution evaluation model, evaluates the temperature distribution in SG as circular arc isolines determined by experiments and preliminary analyses instead of complicated real distribution. In order to improve this model to get more realistic temperature distribution, we have developed the Lagrangian particle method based on engineering approaches. In this study, we have focused on evaluating gas flow in a tube bundle system, and constructed new models for the gas-particles behavior around a tube to evaluate void fraction distribution near the tube. Through the test analysis simulating one target tube system, we confirmed the capability of the models and next topic to improve the models.
Kosaka, Wataru; Uchibori, Akihiro; Yanagisawa, Hideki*; Takata, Takashi; Jang, S.*
Proceedings of 28th International Conference on Nuclear Engineering (ICONE 28) (Internet), 6 Pages, 2021/08
For safety assessment or design of a steam generator (SG) of a sodium-cooled fast reactor, it is important to evaluate the effects of a multiphase flow involving sodium-water reaction. If pressurized water/water-vapor leaks from a tube, it forms a corrosive, high-temperature, and high-velocity jet, and may cause failure of the adjacent tubes. The occurrence of tube failure on many tubes will lead to failure of the boundary between the primary and secondary cooling loops. The numerical analysis code, LEAP-III, has been developed to evaluate water leak rate considering the effects of the above-mentioned phenomena with short computational time. In some cases, however, the current LEAP-III provides excessive conservativeness due to its temperature distribution evaluation model. In order to reduce this excess, we have developed a new Lagrange particle method with several engineering approaches. We also performed test analyses which simulate time development of the vapor jet with chemical reaction in a SG. The results of the developed method were compared with ones of the multi-dimensional multiphase thermal hydraulic analysis code, SERAPHIM which considers compressibility and chemical reaction. Through the test analyses, the basic capability of the developed method was confirmed.
Kosaka, Wataru; Uchibori, Akihiro; Yanagisawa, Hideki*; Takata, Takashi; Jang, S.*
Dai-25-Kai Doryoku, Enerugi Gijutsu Shimpojiumu Koen Rombunshu (Internet), 4 Pages, 2021/07
If a pressurized water/water-vapor leaks from a heat transfer tube in a steam generator (SG) in a sodium-cooled fast reactor (SFR), sodium-water reaction forms high-velocity, high-temperature, and corrosive jet. It would damage the other tubes and might propagate the tube failure in the SG. Thus, it is important to evaluate the effect of the tube failure propagation for safety assessment of SFR. The computational code LEAP-III can evaluate water leak rate during the tube failure propagation with short calculation time, since it consists of empirical formulae and one-dimensional equations of conservation. One of the empirical models, temperature distribution evaluation model, evaluates the temperature distribution in SG as circular arc isolines determined by experiments and preliminary analyses instead of complicated real distribution. In order to improve this model to get more realistic temperature distribution, we have developed the Lagrangian particle method based on engineering approaches. In this study, we have focused on evaluating gas flow in a tube bundle system, and constructed new models for the gas-particles behavior around a tube to evaluate void fraction distribution near the tube. Through the test analysis simulating one target tube system, we confirmed the capability of the models and next topic to improve the models.
Kubo, Kotaro; Zheng, X.; Tanaka, Yoichi; Tamaki, Hitoshi; Sugiyama, Tomoyuki; Jang, S.*; Takata, Takashi*; Yamaguchi, Akira*
Proceedings of 30th European Safety and Reliability Conference and 15th Probabilistic Safety Assessment and Management Conference (ESREL 2020 and PSAM-15) (Internet), p.2279 - 2286, 2020/11
Probabilistic risk assessment (PRA) is one of the methods used to assess the risks associated with large and complex systems. When the risk of an external event is evaluated using conventional PRA, a particular limitation is the difficulty in considering the timing at which nuclear power plant structures, systems, and components fail. To overcome this limitation, we coupled thermal-hydraulic and external-event simulations using Risk Assessment with Plant Interactive Dynamics (RAPID). Internal flooding was chosen as the representative external event, and a pressurized water reactor plant model was used. Equations based on Bernoulli's theorem were applied to flooding propagation in the turbine building. In the analysis, uncertainties were taken into account, including the flow rate of the flood water source and the failure criteria for the mitigation systems. In terms of recovery action, isolation of the flood water source by the operator and drainage using a pump were modeled based on several assumptions. The results indicate that the isolation action became more effective when combined with drainage.
Kubo, Kotaro; Zheng, X.; Ishikawa, Jun; Sugiyama, Tomoyuki; Jang, S.*; Takata, Takashi*; Yamaguchi, Akira*
Proceedings of Asian Symposium on Risk Assessment and Management 2020 (ASRAM 2020) (Internet), 11 Pages, 2020/11
Dynamic probabilistic risk assessment (PRA) enables a more realistic and detailed analysis than classical PRA. However, the trade-off for these improvements is the enormous computational cost associated with performing a large number of thermal-hydraulic (TH) analyses. In this study, based on machine learning (ML), we aim to reduce these costs by skipping the TH analysis. For the ML algorithm, we selected a support vector machine; we built it using a high-fidelity/high-cost detailed model and low-fidelity/low-cost simplified model. As a result, the computational costs could be reduced by approximately 80% without significantly decreasing the accuracy under the assumed conditions.
Kubo, Kotaro; Zheng, X.; Tanaka, Yoichi; Tamaki, Hitoshi; Sugiyama, Tomoyuki; Jang, S.*; Takata, Takashi*; Yamaguchi, Akira*
Proceedings of Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo 2020 (SNA + MC 2020), p.308 - 315, 2020/10
Dynamic probabilistic risk assessment (PRA) is a method for improving the realism and completeness of conventional PRA. However, enormous calculation costs are incurred by these improvements. One solution is to select an appropriate sampling method. In this paper, we applied the Monte Carlo, Latin hypercube, grid-point, and quasi-Monte Carlo sampling methods to the dynamic PRA of a simplified accident sequence and compared the results for each method. Quasi-Monte Carlo sampling was found to be the most effective method in this case.
Lee, W.-Y.*; Park, N.-W.*; Kang, M.-S.*; Kim, G.-S.*; Jang, H. W.*; Saito, Eiji; Lee, S.-K.*
Journal of Physical Chemistry Letters (Internet), 11(13), p.5338 - 5344, 2020/07
Times Cited Count:11 Percentile:58.19(Chemistry, Physical)Uchibori, Akihiro; Yanagisawa, Hideki*; Takata, Takashi; Li, J.*; Jang, S.*
Mechanical Engineering Journal (Internet), 7(3), p.19-00548_1 - 19-00548_11, 2020/06
Evaluation of occurrence possibility of tube failure propagation under sodium-water reaction accident is an important issue. In this study, a numerical analysis method to predict occurrence of failure propagation by overheating rupture was constructed to expand application range of an existing computer code. Applicability of the method was constructed through the numerical analysis of the experiment on water vapor discharging in liquid sodium. To improve the evaluation accuracy for the temperature distribution, a Lagrangian particle model for simulating reacting jet was also developed as an alternative method and its basic function was confirmed.
Uchibori, Akihiro; Yanagisawa, Hideki*; Takata, Takashi; Li, J.*; Jang, S.*
Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 6 Pages, 2019/05
A numerical analysis model to predict occurrence of tube failure propagation by overheating rupture in steam generators of sodium-cooled fast reactors was developed. Applicability of the model was demonstrated through the numerical analysis of the experiment on water vapor discharging in liquid sodium. To improve an accuracy of a sodium-side temperature evaluation, a Lagrangian particle model for simulating the reacting jet was also developed. The numerical results by the program unit of this model showed that the discharged gaseous particles spread with a particle-particle and particle-tube interaction.
Li, J.*; Jang, S.*; Yamaguchi, Akira*; Uchibori, Akihiro; Takata, Takashi; Ohshima, Hiroyuki
Proceedings of 11th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS-11) (Internet), 4 Pages, 2018/11
The sodium-water reaction model is developed in particle methods. Two chemical reaction model, called surface reaction model and gas-phase reaction model are developed in the particle method. Validation on the case of vapor injection into liquid water is conducted and good consistency of jet velocity evolution along jet trajectory is obtained. Finally, sodium-water chemical reaction in a configuration of multiple tube bundles is simulated. Jet velocity, water vapor fraction and temperature are investigated and reasonable results are observed, which presents promising future of this methodology.
Uchibori, Akihiro; Takata, Takashi; Yanagisawa, Hideki*; Li, J.*; Jang, S.*
Proceedings of 2018 ANS Winter Meeting and Nuclear Technology Expo; Embedded Topical International Topical Meeting on Advances in Thermal Hydraulics (ATH 2018) (USB Flash Drive), p.1289 - 1294, 2018/11
Evaluation of occurrence possibility of tube failure propagation under sodium-water reaction accident is an important issue. In this study, a numerical analysis method to predict occurrence of failure propagation by overheating rupture was constructed to expand application range of an existing computer code. Applicability of the method was constructed through the numerical analysis of the experiment on water vapor discharging in liquid sodium. To improve the evaluation accuracy for the temperature distribution, a Lagrangian particle model for simulating reacting jet was also developed as an alternative method and its basic function was confirmed.
Narukawa, Takafumi; Yamaguchi, Akira*; Jang, S.*; Amaya, Masaki
Proceedings of 14th International Conference on Probabilistic Safety Assessment and Management (PSAM-14) (USB Flash Drive), 10 Pages, 2018/09
Narukawa, Takafumi; Yamaguchi, Akira*; Jang, S.*; Amaya, Masaki
Nuclear Engineering and Design, 331, p.147 - 152, 2018/05
Times Cited Count:3 Percentile:27.63(Nuclear Science & Technology)Narukawa, Takafumi; Yamaguchi, Akira*; Jang, S.*; Amaya, Masaki
Journal of Nuclear Materials, 499, p.528 - 538, 2018/02
Times Cited Count:8 Percentile:59.45(Materials Science, Multidisciplinary)Jang, S.*; Yamaguchi, Akira*; Takata, Takashi
Proceedings of 13th Probabilistic Safety Assessment and Management Conference (PSAM-13) (USB Flash Drive), 11 Pages, 2016/10
The current approach to Level 2 probabilistic risk assessment (PRA) using the conventional event-tree (ET)/fault-tree (FT) methodology requires pre-specifications of event order occurrence and component failure probabilities which may vary significantly in the presence of uncertainties. In the present study, a new methodology is proposed to quantify the level 2 PRA in which the accident progression scenarios are dynamic and interactive with the instantaneous plant state and related phenomena. The accident progression is treated as a continuous Markov process and the transition probabilities are evaluated based on the computation of plant system thermal-hydraulic dynamics. A Monte Carlo method is used to obtain the resultant probability of the radioactive material release scenarios. The methodology is applied to the protected loss of heat sink accident scenario of the level 2 PRA of a generation IV fast reactor.