Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 79

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Oxygen interstitials make metastable $$beta$$ titanium alloys strong and ductile

Chong, Y.*; Gholizadeh, R.*; Guo, B.*; Tsuru, Tomohito; Zhao, G.*; Yoshida, Shuhei*; Mitsuhara, Masatoshi*; Godfrey, A.*; Tsuji, Nobuhiro*

Acta Materialia, 257, p.119165_1 - 119165_14, 2023/09

 Times Cited Count:4 Percentile:84.87(Materials Science, Multidisciplinary)

Metastable $$beta$$ titanium alloys possess excellent strain-hardening capability, but suffer from a low yield strength. As a result, numerous attempts have been made to strengthen this important structural material in the last decade. Here, we explore the contributions of grain refinement and interstitial additions in raising the yield strength of a Ti-12Mo (wt.%) metastable $$beta$$ titanium alloy. Surprisingly, rather than strengthening the material, grain refinement actually lowers the ultimate tensile strength in this alloy. This unexpected and anomalous behavior is attributed to a significant enhancement in strain-induced $$alpha^{primeprime}$$ martensite phase transformation, where in-situ synchrotron X-ray diffraction analysis reveals, for the first time, that this phase is much softer than the parent $$beta$$ phase. Instead, a combination of both oxygen addition and grain refinement is found to realize an unprecedented strength-ductility synergy in a Ti-12Mo-0.3O (wt.%) alloy. The advantageous effect of oxygen solutes in this ternary alloy is twofold. Firstly, solute oxygen largely suppresses strain-induced transformation to the $$alpha^{primeprime}$$ martensite phase, even in a fine-grained microstructure, thus avoiding the softening effect of excessive amounts of $$alpha^{primeprime}$$ martensite. Secondly, oxygen solutes readily segregate to twin boundaries, as revealed by atom probe tomography. This restricts the growth of $${332}langle113rangle$$ deformation twins, thereby promoting more extensive twin nucleation, leading to enhanced microstructural refinement. The insights from our work provide a cost-effective rationale for the design of strong yet tough metastable $$beta$$ titanium alloys, with significant implications for more widespread use of this high strength-to-weight structural material.

Journal Articles

Quantitatively evaluating respective contribution of austenite and deformation-induced martensite to flow stress, plastic strain, and strain hardening rate in tensile deformed TRIP steel

Mao, W.; Gao, S.*; Gong, W.; Bai, Y.*; Harjo, S.; Park, M.-H.*; Shibata, Akinobu*; Tsuji, Nobuhiro*

Acta Materialia, 256, p.119139_1 - 119139_16, 2023/09

 Times Cited Count:5 Percentile:90.35(Materials Science, Multidisciplinary)

Transformation-induced plasticity (TRIP)-assisted steels exhibit an excellent combination of strength and ductility due to enhanced strain hardening rate associated with deformation-induced martensitic transformation (DIMT). Quantitative evaluation on the role of DIMT in strain hardening behavior of TRIP-assisted steels and alloys can provide guidance for designing advanced materials with strength and ductility synergy, which is, however, difficult since the phase composition keeps changing and both stress and plastic strain are dynamically partitioned among constituent phases during deformation. In the present study, tensile deformation with ${it in situ}$ neutron diffraction measurement was performed on an Fe-24Ni-0.3C (wt.%) TRIP-assisted austenitic steel. The analysis method based on stress partitioning and phase fractions measured by neutron diffraction was proposed, by which the tensile flow stress and the strain hardening rate of the specimen were resolved into factors associated with each phase, i.e., the austenite matrix, deformation-induced martensite, and the transformation rate of DIMT after differentiation, and then the role of each factor in the global strain hardening behavior was discussed. In addition, the plastic strain partitioning between austenite and martensite was indirectly estimated using the dislocation density measured by diffraction profile analysis, which constructed the full picture of stress and strain partitioning between austenite and martensite in the material. The results suggested that both the transformation rate and the phase stress borne by the deformation-induced martensite played important roles in the global tensile properties of the material. The proposed decomposition analysis method could be widely applied to investigating mechanical behavior of multi-phase alloys exhibiting the TRIP phenomenon.

Journal Articles

PANDORA Project for the study of photonuclear reactions below $$A=60$$

Tamii, Atsushi*; Pellegri, L.*; S$"o$derstr$"o$m, P.-A.*; Allard, D.*; Goriely, S.*; Inakura, Tsunenori*; Khan, E.*; Kido, Eiji*; Kimura, Masaaki*; Litvinova, E.*; et al.

European Physical Journal A, 59(9), p.208_1 - 208_21, 2023/09

 Times Cited Count:1 Percentile:0.02(Physics, Nuclear)

no abstracts in English

Journal Articles

Cu $$K$$-edge X-ray absorption fine structure study of $$T'$$-type $$RE$$$$_{2}$$CuO$$_{4+alpha-delta}$$ ($$RE$$ = Rare Earth); Toward unified understanding of electronic state of $$T'$$-type cuprate

Chen, Y.*; Asano, Shun*; Wang, T.*; Xie, P.*; Kitayama, Shinnosuke*; Ishii, Kenji*; Matsumura, Daiju; Tsuji, Takuya; Taniguchi, Takanori*; Fujita, Masaki*

JPS Conference Proceedings (Internet), 38, p.011050_1 - 011050_6, 2023/05

Journal Articles

Grain refinement in titanium prevents low temperature oxygen embrittlement

Chong, Y.*; Gholizadeh, R.*; Tsuru, Tomohito; Zhang, R.*; Inoue, Koji*; Gao, W.*; Godfrey, A.*; Mitsuhara, Masatoshi*; Morris, J. W. Jr.*; Minor, A. M.*; et al.

Nature Communications (Internet), 14, p.404_1 - 404_11, 2023/02

 Times Cited Count:6 Percentile:93.59(Multidisciplinary Sciences)

Interstitial oxygen embrittles titanium, particularly at cryogenic temperatures, which necessitates a stringent control of oxygen content in fabricating titanium and its alloys. Here, we propose a structural strategy, via grain refinement, to alleviate this problem. Compared to a coarse-grained counterpart that is extremely brittle at 77K, the uniform elongation of an ultrafine-grained (UFG) microstructure (grain size $$sim$$2.0 $$mu$$m) in Ti-0.3wt.%O was successfully increased by an order of magnitude, maintaining an ultrahigh yield strength inherent to the UFG microstructure. This unique strength-ductility synergy in UFG Ti-0.3wt.%O was achieved via the combined effects of diluted grain boundary segregation of oxygen that helps to improve the grain boundary cohesive energy and enhanced $$<c+a>$$ dislocation activities that contribute to the excellent strain hardening ability. The present strategy could not only boost the potential applications of high strength Ti-O alloys at low temperatures, but could also be applied to other alloy systems, where interstitial solution hardening results into an undesirable loss of ductility.

Journal Articles

Unexpected dynamic transformation from $$alpha$$ phase to $$beta$$ phase in zirconium alloy revealed by in-situ neutron diffraction during high temperature deformation

Guo, B.*; Mao, W.; Chong, Y.*; Shibata, Akinobu*; Harjo, S.; Gong, W.; Chen, H.*; Jonas, J. J.*; Tsuji, Nobuhiro*

Acta Materialia, 242, p.118427_1 - 118427_11, 2023/01

 Times Cited Count:5 Percentile:64.46(Materials Science, Multidisciplinary)

Journal Articles

Ultrahigh yield strength and large uniform elongation achieved in ultrafine-grained titanium containing nitrogen

Chong, Y.*; Tsuru, Tomohito; Guo, B.*; Gholizadeh, R.*; Inoue, Koji*; Tsuji, Nobuhiro*

Acta Materialia, 240, p.118356_1 - 118356_15, 2022/11

 Times Cited Count:15 Percentile:92.67(Materials Science, Multidisciplinary)

In this study, we systematically investigated the influences of nitrogen content and grain size on the tensile properties and deformation behaviors of titanium at room temperature. By high-pressure torsion and annealing, we obtained ultrafine-grained (UFG) Ti-0.3wt.%N alloy with a fully recrystallized microstructure, which combined an unprecedented synergy of ultrahigh yield strength (1.04 GPa) and large uniform elongation (10%). The hardening and strain-hardening mechanisms of Ti-0.3wt.%N alloy were comprehensively studied via deformation substructure observation and first-principles calculations. It is revealed that the contributions of nitrogen to the excellent strength/ductility balance in UFG Ti-0.3wt.%N were twofold. On one hand, nitrogen atoms inside the grains strongly impeded the motion of $$<a>$$ dislocations on prismatic plane due the shuffling of nitrogen from octahedral to hexahedral site, giving rise to a six-fold increase in the friction stress than pure Ti. Moreover, the greatly reduced stacking fault energy difference between prismatic and pyramidal planes in Ti-0.3wt.%N alloy facilitated an easier activation of $$<c+a>$$ dislocations, which contributed to an enhanced strain-hardening rate. On the other hand, some nitrogen atoms segregated near the grain boundaries, a phenomenon discovered in $$alpha$$-titanium for the first time. These segregated nitrogen atoms served as an additional contributor to the yield strength of UFG Ti-0.3wt.%N, by raising the barrier against dislocation slip transfer between grains. Our experimental and theoretical calculation work provide insights for the design of affordable high strength titanium without a large sacrifice of ductility, shedding lights on a more widespread use of this high strength to weight material.

Journal Articles

Grain orientation dependence of deformation microstructure evolution and mechanical properties in face-centered cubic high/medium entropy alloys

Yoshida, Shuhei*; Fu, R.*; Gong, W.; Ikeuchi, Takuto*; Bai, Y.*; Feng, Z.*; Wu, G.*; Shibata, Akinobu*; Hansen, N.*; Huang, X.*; et al.

IOP Conference Series; Materials Science and Engineering, 1249, p.012027_1 - 012027_6, 2022/08

 Times Cited Count:0 Percentile:0.83(Metallurgy & Metallurgical Engineering)

Journal Articles

Effective grain size refinement of an Fe-24Ni-0.3C metastable austenitic steel by a modified two-step cold rolling and annealing process utilizing the deformation-induced martensitic transformation and its reverse transformation

Mao, W.; Gao, S.*; Bai, Y.*; Park, M.-H.*; Shibata, Akinobu*; Tsuji, Nobuhiro*

Journal of Materials Research and Technology, 17, p.2690 - 2700, 2022/03

 Times Cited Count:9 Percentile:83.6(Materials Science, Multidisciplinary)

Metastable austenitic steels having ultrafine grained (UFG) microstructures can be fabricated by conventional cold rolling and annealing processes by utilizing the deformation-induced martensitic transformation during cold rolling and its reverse transformation to austenite upon annealing. However, such processes are not applicable when the austenite has high mechanical stability against deformation-induced martensitic transformation, since there is no sufficient amount of martensite formed during cold rolling. In the present study, a two-step cold rolling and annealing process was applied to an Fe-24Ni-0.3C metastable austenitic steel having high mechanical stability. Prior to the cold rolling, a repetitive subzero treatment and reverse annealing treatment were applied. Such a treatment dramatically decreased the mechanical stability of the austenite and greatly accelerated the formation of deformation-induced martensite during the following cold rolling processes. As a result, the grain refinement was significantly promoted, and a fully recrystallized specimen with a mean austenite grain size of 0.5 mm was successfully fabricated, which exhibited both high strength and high ductility.

Journal Articles

Joint environmental radiation survey by JAEA and KAERI around the Fukushima Daiichi Nuclear Power Plant; Performance of mobile gamma-ray spectrometry using backpack and carborne survey platforms

Ji, Y.-Y.*; Ochi, Kotaro; Hong, S. B.*; Nakama, Shigeo; Sanada, Yukihisa; Mikami, Satoshi

Health Physics, 121(6), p.613 - 620, 2021/12

 Times Cited Count:0 Percentile:0.01(Environmental Sciences)

According to the implementing arrangement between JAEA (Japan Atomic Energy Agency) and KAERI (Korea Atomic Energy Research Institute) in the field of the radiation protection and environmental radiation monitoring, the joint measurement has been conducted to assess the radioactive cesium deposition in the ground around the Fukushima Daiichi Nuclear Power Plants (FDNPP). First, mobile gamma-ray spectrometry using backpack survey platform was conducted to assess the distribution of dose rate around specific three survey sites. The carborne survey using gamma-ray spectrometers, as loading inside a vehicle, was successfully conducted to compare measured dose rates in routes from site to site and verify evaluation methods including the attenuation correction.

Journal Articles

Half-integer Shapiro steps in strong ferromagnetic Josephson junctions

Yao, Y.*; Cai, R.*; Yang, S.-H.*; Xing, W.*; Ma, Y.*; Mori, Michiyasu; Ji, Y.*; Maekawa, Sadamichi; Xie, X.-C.*; Han, W.*

Physical Review B, 104(10), p.104414_1 - 104414_6, 2021/09

 Times Cited Count:2 Percentile:7.92(Materials Science, Multidisciplinary)

Journal Articles

Coordination number regulation of molybdenum single-atom nanozyme peroxidase-like specificity

Wang, Y.*; Jia, G.*; Cui, X.*; Zhao, X.*; Zhang, Q.*; Gu, L.*; Zheng, L.*; Li, L. H.*; Wu, Q.*; Singh, D. J.*; et al.

Chem, 7(2), p.436 - 449, 2021/02

 Times Cited Count:194 Percentile:99.8(Chemistry, Multidisciplinary)

Journal Articles

Performance of in situ gamma-ray spectrometry in the assessment of radioactive cesium deposition around the Fukushima Daiichi Nuclear Power Plant

Ji, Y.-Y.*; Ochi, Kotaro; Hong, S. B.*; Nakama, Shigeo; Sanada, Yukihisa; Mikami, Satoshi

Radiation Physics and Chemistry, 179, p.109205_1 - 109205_11, 2021/02

 Times Cited Count:6 Percentile:72.21(Chemistry, Physical)

In situ gamma-ray spectrometry using diverse survey platforms has been conducted in contaminated areas with several dose rate levels around the Fukushima Daiichi Nuclear Power Plant (FDNPP). Six survey sites, including two evacuation zones around the FDNPP, were selected for ground-based gamma-ray spectrometry using HPGe (high purity Ge) and LaBr$$_{3}$$(Ce) detectors to assess the radioactive cesium deposition in the ground. The diverse levels of radioactivity of $$^{137}$$Cs were then distributed to six survey sites from 30 to 3000 kBq m$$^{-2}$$ in the measurement period of October 2018. A method to directly calculate the depth profile using in situ measurement was introduced so as to have representation over a wide area, and the results were successfully compared with those of sample analysis at one point in the site.

Journal Articles

Production of $$^{266}$$Bh in the $$^{248}$$Cm($$^{23}$$Na,5$$n$$)$$^{266}$$Bh reaction and its decay properties

Haba, Hiromitsu*; Fan, F.*; Kaji, Daiya*; Kasamatsu, Yoshitaka*; Kikunaga, Hidetoshi*; Komori, Yukiko*; Kondo, Narumi*; Kudo, Hisaaki*; Morimoto, Koji*; Morita, Kosuke*; et al.

Physical Review C, 102(2), p.024625_1 - 024625_12, 2020/08

 Times Cited Count:6 Percentile:59.56(Physics, Nuclear)

Journal Articles

Expansion of high temperature creep test data for failure evaluation of BWR lower head in severe accident

Yamaguchi, Yoshihito; Katsuyama, Jinya; Kaji, Yoshiyuki; Osaka, Masahiko; Li, Y.

Mechanical Engineering Journal (Internet), 7(3), p.19-00560_1 - 19-00560_12, 2020/06

Since the Fukushima Daiichi Nuclear Power Plant accident, we have been developing a failure evaluation method that considers creep damage mechanisms using detailed three-dimensional finite element analysis model of lower head including penetration, stub tubes, and weld parts, etc., for the early completion of the decommissioning of the nuclear power plants in Fukushima Daiichi. For the finite element analysis, we have been obtaining material properties for which no data are provided in existing databases or in the literature. In particular, creep data corresponding to the high temperature region near the melting point of materials is important in evaluating creep deformation under severe accident conditions. In this study, we obtained the uniaxial tensile and creep properties for low-alloy steel, stainless steel, and Ni-based alloy. In particular, creep test data with long rupture times at high temperatures are expanded using a tensile test machine that can measure the elongation of test specimens in a noncontact measurement system. The parameters related to the failure evaluation were improved on the basis of the expanded creep database.

Journal Articles

Expansion of high temperature creep test data for failure evaluation of BWR lower head in a severe accident

Yamaguchi, Yoshihito; Katsuyama, Jinya; Kaji, Yoshiyuki; Osaka, Masahiko; Li, Y.

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 7 Pages, 2019/05

After the Fukushima Daiichi (1F) Nuclear Power Plant accident, we have been developing a prediction method for rupture time and location considering creep damage mechanisms using finite element analysis for early completion of the decommissioning of nuclear power plants in 1F. We have also been obtaining material properties at high temperature near the melting point which are not provided in existing database or literature for the finite element analysis. In this study, we performed uni-axial tensile and creep tests for low alloy steel, Ni-based alloy steel and stainless steels and expanded existing database of material properties. Especially, creep data with longer rupture time at high temperature were obtained by a creep test equipment with a noncontact measurement system. To improve the accuracy of failure evaluation under severe accident conditions, we determined parameters of creep constitutive law based on the expanded database.

Journal Articles

First direct mass measurements of nuclides around $$Z$$ = 100 with a multireflection time-of-flight mass spectrograph

Ito, Yuta*; Schury, P.*; Wada, Michiharu*; Arai, Fumiya*; Haba, Hiromitsu*; Hirayama, Yoshikazu*; Ishizawa, Satoshi*; Kaji, Daiya*; Kimura, Sota*; Koura, Hiroyuki; et al.

Physical Review Letters, 120(15), p.152501_1 - 152501_6, 2018/04

 Times Cited Count:60 Percentile:93.36(Physics, Multidisciplinary)

Masses of $$^{246}$$Es, $$^{251}$$Fm and the transfermium nuclei $$^{249-252}$$Md, and $$^{254}$$No, produced by hot- and cold-fusion reactions, in the vicinity of the deformed $$N=152$$ neutron shell closure, have been directly measured using a multi-reflection time-of-flight mass spectrograph. The masses of $$^{246}$$Es and $$^{249,250,252}$$Md were measured for the first time. Using the masses of $$^{249,250}$$Md as anchor points for $$alpha$$ decay chains, the masses of heavier nuclei, up to $$^{261}$$Bh and $$^{266}$$Mt, were determined. These new masses were compared with theoretical global mass models and demonstrated to be in good agreement with macroscopic-microscopic models in this region. The empirical shell gap parameter $$delta_{2n}$$ derived from three isotopic masses was updated with the new masses and corroborate the existence of the deformed $$N=152$$ neutron shell closure for Md and Lr.

Journal Articles

Observation of doubly-charged ions of francium isotopes extracted from a gas cell

Schury, P.*; Wada, Michiharu*; Ito, Yuta*; Kaji, Daiya*; Haba, Hiromitsu*; Hirayama, Yoshikazu*; Kimura, Sota*; Koura, Hiroyuki; MacCormick, M.*; Miyatake, Hiroari*; et al.

Nuclear Instruments and Methods in Physics Research B, 407, p.160 - 165, 2017/06

 Times Cited Count:14 Percentile:78.05(Instruments & Instrumentation)

Various isotopes of Ac, Ra, Fr, and Rn were produced by fusion-evaporation reactions using a $$^{48}$$Ca beam. The energetic ions were stopped in and extracted from a helium gas cell. The extracted ions were identified using a multi-reflection time-of-fight mass spectrograph. In all cases, it was observed that the predominant charge state for the extracted ions, including the alkali Fr, was 2+.

Journal Articles

Wetting induced oxidation of Pt-based nano catalysts revealed by ${{it in situ}}$ high energy resolution X-ray absorption spectroscopy

Cui, Y.-T.*; Harada, Yoshihisa*; Niwa, Hideharu*; Hatanaka, Tatsuya*; Nakamura, Naoki*; Ando, Masaki*; Yoshida, Toshihiko*; Ishii, Kenji*; Matsumura, Daiju; Oji, Hiroshi*; et al.

Scientific Reports (Internet), 7(1), p.1482_1 - 1482_8, 2017/05

 Times Cited Count:19 Percentile:49.58(Multidisciplinary Sciences)

Journal Articles

Complex chemistry with complex compounds

Eichler, R.*; Asai, Masato; Brand, H.*; Chiera, N. M.*; Di Nitto, A.*; Dressler, R.*; D$"u$llmann, Ch. E.*; Even, J.*; Fangli, F.*; Goetz, M.*; et al.

EPJ Web of Conferences, 131, p.07005_1 - 07005_7, 2016/12

 Times Cited Count:3 Percentile:72.98(Chemistry, Inorganic & Nuclear)

In recent years gas-phase chemical studies assisted by physical pre-separation allowed for the productions and investigations of fragile single molecular species of superheavy elements. The latest highlight is the formation of very volatile hexacarbonyl compound of element 106, Sg(CO)$$_{6}$$. Following this success, second-generation experiments were performed to measure the first bond dissociation energy between the central metal atom and the surrounding ligand. The method using a tubular decomposition reactor was developed and successfully applied to short-lived Mo(CO)$$_{6}$$, W(CO)$$_{6}$$, and Sg(CO)$$_{6}$$.

79 (Records 1-20 displayed on this page)