Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Naeem, M.*; Ma, Y.*; Tian, J.*; Kong, H.*; Romero-Resendiz, L.*; Fan, Z.*; Jiang, F.*; Gong, W.; Harjo, S.; Wu, Z.*; et al.
Materials Science & Engineering A, 924, p.147819_1 - 147819_10, 2025/02
Times Cited Count:0 Percentile:0.00(Nanoscience & Nanotechnology)Xi, H.-Z.*; Jiang, Y.-W.*; Chen, H.-X.*; Hosaka, Atsushi; Su, N.*
Physical Review D, 108(9), p.094019_1 - 094019_13, 2023/11
Times Cited Count:4 Percentile:55.83(Astronomy & Astrophysics)no abstracts in English
Kondo, Yosuke*; Achouri, N. L.*; Al Falou, H.*; Atar, L.*; Aumann, T.*; Baba, Hidetada*; Boretzky, K.*; Caesar, C.*; Calvet, D.*; Chae, H.*; et al.
Nature, 620(7976), p.965 - 970, 2023/08
Times Cited Count:23 Percentile:94.90(Multidisciplinary Sciences)no abstracts in English
Jiang, X.*; Hattori, Takanori; Xu, X.*; Li, M.*; Yu, C.*; Yu, D.*; Mole, R.*; Yano, Shinichiro*; Chen, J.*; He, L.*; et al.
Materials Horizons, 10(3), p.977 - 982, 2023/03
Times Cited Count:23 Percentile:92.90(Chemistry, Multidisciplinary)As a promising environment-friendly alternative to current vapor-compression refrigeration, solid-state refrigeration based on the barocaloric effect has been attracting world wide attention. Generally, both phases in which a barocaloric effect occurs are present at ambient pressure. Here, instead, we demonstrate that KPF exhibits a colossal barocaloric effect due to the creation of a high-pressure rhombohedral phase. The phase diagram is constructed based on pressure-dependent calorimetric, Raman scattering, and neutron diffraction measurements. The present study is expected to provide an alternative routine to colossal barocaloric effects through the creation of a high-pressure phase.
Sheng, J.*; Wang, L.*; Candini, A.*; Jiang, W.*; Huang, L.*; Xi, B.*; Zhao, J.*; Ge, H.*; Zhao, N.*; Fu, Y.*; et al.
Proceedings of the National Academy of Sciences of the United States of America, 119(51), p.e2211193119_1 - e2211193119_9, 2022/12
Times Cited Count:24 Percentile:89.85(Multidisciplinary Sciences)Wei, D.*; Wang, L.*; Zhang, Y.*; Gong, W.; Tsuru, Tomohito; Lobzenko, I.; Jiang, J.*; Harjo, S.; Kawasaki, Takuro; Bae, J. W.*; et al.
Acta Materialia, 225, p.117571_1 - 117571_16, 2022/02
Times Cited Count:93 Percentile:99.66(Materials Science, Multidisciplinary)Tanaka, Junki*; Yang, Z.*; Typel, S.*; Adachi, Satoshi*; Bai, S.*; van Beek, P.*; Beaumel, D.*; Fujikawa, Yuki*; Han, J.*; Heil, S.*; et al.
Science, 371(6526), p.260 - 264, 2021/01
Times Cited Count:70 Percentile:99.34(Multidisciplinary Sciences)By employing quasi-free -cluster-knockout reactions, we obtained direct experimental evidence for the formation of
clusters at the surface of neutron-rich tin isotopes. The observed monotonous decrease of the reaction cross sections with increasing mass number, in excellent agreement with the theoretical prediction, implies a tight interplay between
-cluster formation and the neutron skin.
Lai, W.-H.*; Wang, H.*; Zheng, L.*; Jiang, Q.*; Yan, Z.-C.*; Wang, L.*; Yoshikawa, Hirofumi*; Matsumura, Daiju; Sun, Q.*; Wang, Y.-X.*; et al.
Angewandte Chemie; International Edition, 59(49), p.22171 - 22178, 2020/12
Times Cited Count:101 Percentile:95.74(Chemistry, Multidisciplinary)Sun, M. D.*; Liu, Z.*; Huang, T. H.*; Zhang, W. Q.*; Andreyev, A. N.; Ding, B.*; Wang, J. G.*; Liu, X. Y.*; Lu, H. Y.*; Hou, D. S.*; et al.
Physics Letters B, 800, p.135096_1 - 135096_5, 2020/01
Times Cited Count:12 Percentile:74.96(Astronomy & Astrophysics)Kamada, Masaki; Hanada, Masaya; Ikeda, Yoshitaka; Grisham, L. R.*; Jiang, W.*
Review of Scientific Instruments, 79(2), p.02C114_1 - 02C114_3, 2008/02
Times Cited Count:16 Percentile:56.45(Instruments & Instrumentation)no abstracts in English
Kamada, Masaki; Hanada, Masaya; Ikeda, Yoshitaka; Jiang, W.*
no journal, ,
no abstracts in English
Nakata, Kotaro*; Hasegawa, Takuma*; Ota, Tomoko*; Jiang, W.*; Lu, Z. T.*; Miyakawa, Kazuya
no journal, ,
no abstracts in English
Jiang, L.*; Wang, H. H.*; Xu, P. G.; Su, Y. H.; Shinohara, Takenao; Wang, Y. W.*
no journal, ,
High manganese austenitic steels as a cryogenic structural material are widely applied in the pressurized storage infrastructures for storing and transporting liquefied natural gas (LNG), liquefied hydrogen (LH). Considering that cryogenic impact toughness is important in predicting the service performance of high manganese austenitic steel, it is critical for analyzing residual strain and plastic deformation evolution in impacted fractures and for deeply understanding the deformation and fracture mechanisms. Here, the strain and plastic deformation evolution of impacted fractures in high manganese steel (24Mn-4Cr-0.4C-0.3Cu) were comparably investigated by neutron Bragg-edge transmission (BET) imaging and electron back scattering diffraction (EBSD) at various cryogenic temperatures. The BET results show that the residual strain 111 is negative and
200 is positive in the region with large plastic deformation near the fracture. However,
111 and
200 in the region far away from the fracture show similar distribution in the V-notched impact sample at the same temperature. With the decrease of impact temperature, the high broadening area of Bragg-edge width near the fracture gradually decreased, revealing that the local plastic strain during cryogenic impact deformation in the corresponding area decreased, which is primarily consistent in the change trend of impact toughness value obtained at various temperatures. EBSD results show evident difference in the local distribution density of
111
and
200
-oriented grains in the region near the fracture after cryogenic impacting. It is suggested that the steel texture is a primary reason for clarifying the different distribution features of
111 and
200 in the region near the cryogenic impact fracture.
Kamada, Masaki; Hanada, Masaya; Kobayashi, Kaoru; Ikeda, Yoshitaka; Grisham, L. R.*; Jiang, W.*
no journal, ,
no abstracts in English