Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 31

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Progress of full-f gyrokinetic simulation toward reactor relevant numerical experiments

Idomura, Yasuhiro; Nakata, Motoki; Jolliet, S.*

Plasma and Fusion Research (Internet), 9(Sp.2), p.3503028_1 - 3503028_7, 2014/04

Full-f gyrokinetic simulations compute both turbulent transport and profile formations under fixed power, momentum, and particle input as in experiments. This approach has the capability of dictating plasma profiles, provided that time scale of the simulation is long enough to establish power, momentum, and particle balance conditions. Recent Peta-scale supercomputers made such long time scale simulations feasible, and full-f gyrokinetic simulations are applied to reactor relevant numerical experiments. In this paper, physical models, numerical approaches, and accuracy issues of the gyrokinetic full-f Eulerian code GT5D are summarized, and then, its recent applications to the scaling studies of turbulent transport with respect to plasma size and heating power are reviewed.

Journal Articles

Parallel filtering in global gyrokinetic simulations

Jolliet, S.; McMillan, B. F.*; Villard, L.*; Vernay, T.*; Angelino, P.*; Tran, T. M.*; Brunner, S.*; Bottino, A.*; Idomura, Yasuhiro

Journal of Computational Physics, 231(3), p.745 - 758, 2012/02

 Times Cited Count:13 Percentile:61.19(Computer Science, Interdisciplinary Applications)

Journal Articles

Plasma size scaling of avalanche-like heat transport in tokamaks

Jolliet, S.; Idomura, Yasuhiro

Nuclear Fusion, 52(2), p.023026_1 - 023026_14, 2012/02

Journal Articles

Performance evaluations of gyrokinetic Eulerian code GT5D on massively parallel multi-core platforms

Idomura, Yasuhiro; Jolliet, S.*

Proceedings of International Conference for High Performance Computing, Networking, Storage and Analysis (SC '11) (USB Flash Drive), 9 Pages, 2011/11

Plasma turbulence simulations based on the five dimensional (5D) gyrokinetic equation, which is the first principle model of fusion plasmas, are standard tools in analyzing turbulent transport phenomena. However, 5D turbulence simulations at the ITER size requires extreme scale computation, and therefore, an efficient use of massively parallel computers has been an important issue in computational fusion science. In GT5D, which is a 5D Eulerian code developed by JAEA, 5D phase space is parallelized using multi-dimensional domain decomposition based on physical symmetry properties of the equation system. By implementing this parallel model on a multilayer network consisting of multiple MPI communicators and a SMP layer, the scalability is highly improved, and the sustained performance of $$sim19.4$$ Tflops is achieved on 16384 cores of BX900.

Journal Articles

Simulating plasma turbulence with the global Eulerian gyrokinetic code GT5D

Jolliet, S.; Idomura, Yasuhiro

Progress in Nuclear Science and Technology (Internet), 2, p.85 - 89, 2011/10

Journal Articles

Performance evaluations of advanced massively parallel platforms based on gyrokinetic toroidal five-dimensional eulerian code GT5D

Idomura, Yasuhiro; Jolliet, S.

Progress in Nuclear Science and Technology (Internet), 2, p.620 - 627, 2011/10

Journal Articles

Consequences of profile shearing on toroidal momentum transport

Camenen, Y.*; Idomura, Yasuhiro; Jolliet, S.; Peeters, A. G.*

Nuclear Fusion, 51(7), p.073039_1 - 073039_11, 2011/07

 Times Cited Count:87 Percentile:96.38(Physics, Fluids & Plasmas)

Journal Articles

Impact of toroidal rotation and safety factor on ion turbulent transport in tokamaks

Idomura, Yasuhiro; Jolliet, S.; Yoshida, Maiko; Urano, Hajime

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2011/03

An impact of the toroidal rotation and the safety factor q on the ion temperature gradient driven (ITG) turbulence is studied using a global gyrokinetic toroidal full-f five dimensional Euleriancode GT5D. In the rotation scan numerical experiments, the radial electric field Er profile is changed depending on the toroidal rotation. Although local transport levels are affected by the Er profile, global transport properties are not changed, when the magnitudes of its shearing rate are in similar levels on average. In the q scan numerical experiments, turbulent transport is significantly enhanced at higher q. It is found that the stabilizing effect of Er shear on liner ITG modes becomes less effective at higher q. Both the ion heat transport and the non-diffusive momentum transport are enhanced. The former leads to lower ion temperature gradient, while the latter produces larger inward momentum flux and co-current spontaneous rotation in the plasma core.

Journal Articles

Transport and turbulence with innovative plasma shapes in the TCV tokamak

Labit, B.*; Pochelon, A.*; Rancic, M.*; Piras, F.*; Bencze, A.*; Bottino, A.*; Brunner, S.*; Camenen, Y.*; Chattopadhyay, P. K.*; Coda, S.*; et al.

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2011/03

Journal Articles

Plasma size scaling of avalanche-like heat transport in tokamaks

Jolliet, S.*; Idomura, Yasuhiro

Nuclear Fusion, 52(2), p.023026_1 - 023026_14, 2011/02

 Times Cited Count:38 Percentile:84.56(Physics, Fluids & Plasmas)

Journal Articles

Gyrokinetic simulations of turbulent transport; Size scaling and chaotic behaviour

Villard, L.*; Bottino, A.*; Brunner, S.*; Casati, A.*; Chowdhury, J.*; Dannert, T.*; Ganesh, R.*; Garbet, X.*; G$"o$rler, T.*; Grandgirard, V.*; et al.

Plasma Physics and Controlled Fusion, 52(12), p.124038_1 - 124038_18, 2010/11

 Times Cited Count:18 Percentile:56.65(Physics, Fluids & Plasmas)

Journal Articles

System size effects on gyrokinetic turbulence

McMillan, B. F.*; Lapillonne, X.*; Brunner, S.*; Villard, L.*; Jolliet, S.; Bottino, A.*; G$"o$rler, T.*; Jenko, F.*

Physical Review Letters, 105(15), p.155001_1 - 155001_4, 2010/10

 Times Cited Count:98 Percentile:93.44(Physics, Multidisciplinary)

Journal Articles

Global nonlinear electromagnetic simulations of tokamak turbulence

Bottino, A.*; Scott, B. D.*; Brunner, S.*; McMillan, B. F.*; Tran, T. M.*; Vernay, T.*; Villard, L.*; Jolliet, S.; Hatzky, R.*; Peeters, A. G.*

IEEE Transactions on Plasma Science, 38(9), p.2129 - 2135, 2010/09

 Times Cited Count:26 Percentile:69.61(Physics, Fluids & Plasmas)

Journal Articles

A Global collisionless PIC code in magnetic coordinates

Jolliet, S.*; Bottino, A.*; Angelino, P.*; Hatzky, R.*; Tran, T. M.*; McMillan, B. F.*; Sauter, O.*; Appert, K.*; Idomura, Yasuhiro; Villard, L.*

Computer Physics Communications, 177(5), p.409 - 425, 2007/09

 Times Cited Count:175 Percentile:98.47(Computer Science, Interdisciplinary Applications)

A global plasma turbulence simulation code, ORB5, is presented. A particular feature is the use of straight-field-line magnetic coordinates and a field-aligned Fourier filtering technique that dramatically improves the performance of the code in terms of both the numerical noise reduction and the maximum time step allowed. Another feature is the capability to treat arbitrary axisymmetric ideal MHD equilibrium configurations. The code is validated against an analytical theory of zonal flows and against other codes for a selection of linear and nonlinear tests.

Journal Articles

Recent advances in nonlinear gyrokinetic PIC simulations in tokamak geometry

Bottino, A.*; Angelino, P.*; Allfrey, S. J.*; Brunner, S.*; Hatzky, R.*; Idomura, Yasuhiro; Jolliet, S.*; Sauter, O.*; Tran, T. M.*; Villard, L.*

Theory of Fusion Plasmas, ISPP21, p.75 - 86, 2004/00

The global nonlinear electrostatic PIC code ORB5 solves the gyrokinetic Vlasov-Poisson system assuming adiabatic electrons in realistic tokamak magnetohydrodynamic (MHD) equilibria. The present version of ORB5 shows remarkable particle and energy conservation properties and can be used for physics studies in toroidal geometry. In particular, the optimized tracer loading method has been adapted to tokamak geometry and implemented in ORB5 together with a new adaptive gyro-average algorithm. Basic physical conservation properties (energy and particle number) are used as indicators of the quality of the numerical simulations. In this paper we present the first nonlinear results of electrostatic collisionless microinstabilities of realistic MHD shaped equilibria, provided by the MHD equilibrium code CHEASE, including the toroidicity induced geometrical coupling of the zonal ExB flow and the parallel velocity nonlinearlity.

Journal Articles

A Linear gyrokinetic model in magnetic coordinates

Jolliet, S.*; Angelino, P.*; Bottino, A.*; Idomura, Yasuhiro; Villard, L.*

Theory of Fusion Plasmas, ISPP21, p.345 - 351, 2004/00

Global particle-in-cell (PIC) simulations are a very useful tool for studying the time evolution of turbulence induced by ion-temperature-gradient (ITG) instabilities. Unfortunately, the linear code LORB5 and its non-linear version ORB5 require high computational power. In order to study more sophisticated models, we need to optimize these codes. We will focus on LORB5, which uses a cylindrical grid (r,z) for solving the Vlasov equation and a (s,$$theta$$) grid for the Poisson equation. The approach presented in this work consists of implementing the gyrokinetic model using a single (s,$$theta_*$$) grid. Here $$theta_*$$ is the straight-field-line poloidal coordinate. A method to avoid the singularity at the magnetic axis is presented, and a benchmark with the CYCLONE case is shown.

Oral presentation

Gyrokinetic PIC simulation of trapped electron mode turbulence

Jolliet, S.*; Villard, L.*; Idomura, Yasuhiro; McMillan, B. F.*; Bottino, A.*; Lapillonne, X.*

no journal, , 

no abstracts in English

Oral presentation

Global nonlinear particle-in-cell simulations of trapped-electron-mode turbulence

Jolliet, S.; McMillan, B. F.*; Bottino, A.*; Angelino, P.*; Lapillonne, X.*; Vernay, T.*; Idomura, Yasuhiro; Villard, L.*

no journal, , 

Oral presentation

Parallel filtering in global Vlasov simulations

Jolliet, S.; Idomura, Yasuhiro

no journal, , 

Oral presentation

Properties of avalanches and momentum transport in driven ITG turbulence

Idomura, Yasuhiro; Jolliet, S.

no journal, , 

Rotation scan numerical experiments are performed in first principle tokamak micro-turbulence simulations of driven ion temperature gradient turbulence. It is seen that radial electric fields change depending on plasma rotation profiles through a momentum balance relation. Influences of the radial electric field shear on avalanche-like ion heat transport are estimated, and it is found that plasma rotation profiles with weak radial electric field shear lead to higher heat transport. From the momentum transport analyses with different rotation profiles, the momentum diffusion, the momentum pinch, and the residual stress are evaluated.

31 (Records 1-20 displayed on this page)