Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Characteristics of global energy confinement in KSTAR L- and H-mode plasmas

Kim, H.-S.*; Jeon, Y. M.*; Na, Y.-S.*; Ghim, Y.-C.*; Ahn, J.-W.*; Yoon, S. W.*; Bak, J. G.*; Bae, Y. S.*; Kim, J. S.*; Joung, M.*; et al.

Nuclear Fusion, 54(8), p.083012_1 - 083012_11, 2014/08

 Times Cited Count:3 Percentile:76.87(Physics, Fluids & Plasmas)

We evaluate the characteristics of global energy confinement in KSTAR ($$tau_{E, rm KSTAR}$$) quantitatively by comparing it with multi-machine scalings, by deriving multiple regression equations for the L- and the H-mode plasmas, and evaluating confinement enhancement of the H-mode phase compared with the L-mode phase in each discharge. From the KSTAR database, $$tau_{E, rm KSTAR}$$ of L-mode plasmas exhibits $$sim 0.04$$ s to $$sim 0.16$$ s and $$tau_{E, rm KSTAR}$$ of H-mode plasmas $$sim 0.06$$ s to $$sim 0.19$$ s. The multiple regression equations derived by statistical analysis present the similar dependency on PL and slightly higher dependency on IP compared with the multi-machine scalings, however the dependency on elongation $$kappa$$ in both L- and H-mode plasmas draw the negative power dependency of $$kappa^{-0.68}$$ and $$kappa^{-0.76}$$ for H-mode and for L- mode database, respectively on the contrary to the positive dependency in all multi-machine empirical scalings. Although the reason is not clear yet, two possibilities are addressed. One is that the wall condition of KSTAR was not clean enough. The other is that striking points on the divertor plate were uncontrolled. For these reasons, as $$kappa$$ increases, the impurities from the wall can penetrate into plasmas easily. As a consequence, the confinement is degraded on the contrary to the expectation of multi-machine scalings.

Journal Articles

Development of high voltage power supply for the KSTAR 170 GHz ECH and CD system

Jeong, J. H.*; Bae, Y. S.*; Joung, M.*; Kim, H. J.*; Park, S. I.*; Han, W. S.*; Kim, J. S.*; Yang, H. L.*; Kwak, J. G.*; Sakamoto, Keishi; et al.

Fusion Engineering and Design, 88(5), p.380 - 387, 2013/06

 Times Cited Count:1 Percentile:85.59(Nuclear Science & Technology)

Journal Articles

Status and result of the KSTAR upgrade for the 2010's campaign

Yang, H. L.*; Kim, Y. S.*; Park, Y. M.*; Bae, Y. S.*; Kim, H. K.*; Kim, K. M.*; Lee, K. S.*; Kim, H. T.*; Bang, E. N.*; Joung, M.*; et al.

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2011/03

Because the 2010 operation of Korea Superconducting Tokamak Advanced Research (KSTAR) mainly aims to achieve strongly elongated and diverted plasma, all the necessary hardware systems to provide an essential circumstance for the plasma shaping were newly installed and upgraded in 2010. In this paper, general configuration of the upgraded systems described earlier will be outlined. Moreover, several key performances and test results of the systems will be also reported in summary.

Journal Articles

ECRH assisted plasma start-up with toroidally inclined launch; Multi-machine comparison and perspectives for ITER

Stober, J.*; Jackson, G. L.*; Ascasibar, E.*; Bae, Y.-S.*; Bucalossi, J.*; Cappa, A.*; Casper, T.*; Cho, M. H.*; Gribov, Y.*; Granucci, G.*; et al.

Proceedings of 23rd IAEA Fusion Energy Conference (FEC 2010) (CD-ROM), 8 Pages, 2010/10

Oral presentation

Confinement characteristics of the extended operation regime of KSTAR toward advanced scenarios

Na, Y. S.*; Suzuki, Takahiro; Ide, Shunsuke; Mueller, D.*; Kim, J. H.*; Miyata, Yoshiaki; Kim, S. H.*; Kim, H. S.*; Jeon, Y. M.*; Bae, Y. S.*; et al.

no journal, , 

Development of advanced scenarios, an important experimental goal for the KSTAR project, has just begun. Target plasmas were successfully produced using large bore plasma and early divertor formation which exhibit low internal inductance with low magnetic shear at the centre and no sawtooth instability. Auxilliary heating during the current rampup phase was employed to slow the inductive current diffusion to the centre of the plasma. With respect to hybrid scenario development, so-called "Ip-overshoot" method being used in JET is applied for tailoring magnetic shear at reduced plasma current for higher poloidal beta and bootstrap current fraction. The confinement characteristics of these scenarios are investigated. Transport modeling is performed self-consistently with an integrated simulation package incorporating plasma equilibrium, transport, heating and current drive. Firstly, the current rampup phase is simulated and its impact on the target q-profile is addressed. Secondly, energy confinement of flattop phases is discussed. In addition, the non-inductive current drive fraction including the bootstrap current fraction is calculated. Lastly, these scenarios are compared with advanced scenarios developed in other tokamak devices and future directions in achieving advanced regimes are discussed.

5 (Records 1-5 displayed on this page)
  • 1