Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Sugita, Yutaka; Ono, Hirokazu; Beese, S.*; Pan, P.*; Kim, M.*; Lee, C.*; Jove-Colon, C.*; Lopez, C. M.*; Liang, S.-Y.*
Geomechanics for Energy and the Environment, 42, p.100668_1 - 100668_21, 2025/06
Times Cited Count:1 Percentile:0.00(Energy & Fuels)The international cooperative project DECOVALEX 2023 focused on the Horonobe EBS experiment in the Task D, which was undertaken to study, using numerical analyses, the thermo-hydro-mechanical (or thermo-hydro) interactions in bentonite based engineered barriers. One full-scale in-situ experiment and four laboratory experiments, largely complementary, were selected for modelling. The Horonobe EBS experiment is a temperature-controlled non-isothermal experiment combined with artificial groundwater injection. The Horonobe EBS experiment consists of the heating and cooling phases. Six research teams performed the THM or TH (depended on research team approach) numerical analyses using a variety of computer codes, formulations and constitutive laws.
Sugita, Yutaka; Ono, Hirokazu; Beese, S.*; Pan, P.*; Kim, M.*; Lee, C.*; Jove-Colon, C.*; Lopez, C. M.*; Liang, S.-Y.*
no journal, ,
This paper presents the results of analytical simulations of in-situ test of engineered barriers system conducted at the Horonobe Underground Research Laboratory. This results is one of the tasks of the current phase "DECOVALEX-2023" of the international joint project DECOVALEX in which JAEA participates. Research teams from 6 countries or region, including JAEA, are participating in this task, Different analytical approaches and their effects on the analytical results are introduced, as well as the factors that affect the evaluation of coupled phenomena in engineered barrier system obtained through the task.