Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 276

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Nonmagnetic-magnetic transition and magnetically ordered structure in SmS

Yoshida, Shogo*; Koyama, Takehide*; Yamada, Haruhiko*; Nakai, Yusuke*; Ueda, Koichi*; Mito, Takeshi*; Kitagawa, Kentaro*; Haga, Yoshinori

Physical Review B, 103(15), p.155153_1 - 155153_5, 2021/04

 Times Cited Count:0 Percentile:0(Materials Science, Multidisciplinary)

JAEA Reports

Analysis of the radioactivity concentrations in low-level radioactive waste generated from JRR-3 and JPDR facilities

Tsuchida, Daiki; Haraga, Tomoko; Tobita, Minoru*; Omori, Hiroyuki*; Omori, Takeshi*; Murakami, Hideaki*; Mitsukai, Akina; Aono, Ryuji; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Data/Code 2020-022, 34 Pages, 2021/03

JAEA-Data-Code-2020-022.pdf:1.74MB

Radioactive wastes generated from nuclear research facilities in Japan Atomic Energy Agency are planning to be buried in the near surface disposal field. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes until the beginning of disposal. In order to contribute to this work, we collected and analyzed concrete samples generated from JRR-3 and JPDR. In this report, we summarized the radioactivity concentrations of 22 radionuclides($$^{3}$$H, $$^{14}$$C, $$^{36}$$Cl, $$^{41}$$Ca, $$^{60}$$Co, $$^{63}$$Ni, $$^{90}$$Sr, $$^{94}$$Nb, $$^{rm 108m}$$Ag, $$^{133}$$Ba, $$^{137}$$Cs, $$^{152}$$Eu, $$^{154}$$Eu, $$^{rm 166m}$$Ho, $$^{234}$$U, $$^{238}$$U, $$^{238}$$Pu, $$^{239+240}$$Pu, $$^{241}$$Am, $$^{243}$$Am, $$^{244}$$Cm) which were obtained from radiochemical analysis of the samples.

Journal Articles

Upgrade history and present status of the general control system for the Materials and Life Science Experimental Facility at J-PARC

Sakai, Kenji; Oi, Motoki; Haga, Katsuhiro; Kai, Tetsuya; Nakatani, Takeshi; Kobayashi, Yasuo*; Watanabe, Akihiko*

JPS Conference Proceedings (Internet), 33, p.011151_1 - 011151_6, 2021/03

For safely and efficiently operating a spallation neutron source and a muon target, a general control system (GCS) operates within Materials and Life Science Experimental Facility (MLF), GCS administers operation processes and interlocks of many instruments for various operation statuses. It consists of several subsystems such as an integral control system (ICS), interlock systems (ILS), shared servers, network system, and timing distribution system (TDS). Although GCS is an independent system that controls the target stations, it works closely with the control systems of other facilities in J-PARC. Since the first beam injection in 2008, GCS has operated stably without any serious troubles after modification based on commissioning for operation and control. Then, significant improvements in GCS such as upgrade of ICS by changing its framework software and function enhancement of ILS were proceeded until 2015, in considering sustainable long-term operation and maintenance. In recent years, many instruments in GCS have replaced due to end of production and support of them. In this way, many modifications have been proceeded in the entire GCS after start of beam operation. Under these situation, it is important to comprehend upgrade history and present status of GCS in order to decide its upgrade plan for the coming ten years. This report will mention upgrade history, present status and future agenda of GCS.

Journal Articles

Measurement of Doppler broadening of prompt gamma-rays from various zirconium- and ferro-borons

Tsuchikawa, Yusuke; Kai, Tetsuya; Abe, Yuta; Oishi, Yuji*; Sun, Y.*; Oikawa, Kenichi; Nakatani, Takeshi; Sato, Ikken

Nuclear Instruments and Methods in Physics Research A, 991, p.164964_1 - 164964_5, 2021/03

 Times Cited Count:0 Percentile:0.03(Instruments & Instrumentation)

Peak shape analysis was performed for the energy spectra of Doppler-broadened prompt $$gamma$$-rays generated by neutron capture reactions with various boride or boron samples. Significant differences were observed between nonmetallic and metallic borides. Minor differences between the peak shapes of prompt $$gamma$$-rays from zirconium- and ferro-borons were evaluated by a peak fitting method. The identification of zirconium- and ferro-borons and other types of borides was estimated.

Journal Articles

Verification of KURBUC-based ion track structure mode for proton and carbon ions in the PHITS code

Matsuya, Yusuke; Kai, Takeshi; Sato, Tatsuhiko; Liamsuwan, T.*; Sasaki, Kohei*; Nikjoo, H.*

Physics in Medicine & Biology, 66(6), p.06NT02_1 - 06NT02_11, 2021/03

 Times Cited Count:1 Percentile:77.24(Engineering, Biomedical)

A general-purpose Monte Carlo radiation transport simulation code, Particle and Heavy Ion Transport code System (PHITS), has the ability to handle diverse particle types over a wide range of energy. In PHITS version 3.20, ion track structure mode has been developed based on the algorithms in the KURBUC code, which enables to simulate the atomic interactions by primary ion and secondary particles (named as PHITS-KURBUC mode). In this study, we compared the range, radial dose distributions, and microdosimetric distributions calculated using the PHITS-KURBUC mode to the corresponding data obtained from the original KURBUC and from other studies. These comparative studies confirm the successful inclusion of the KURBUC code in the PHITS code. As results of the synergistic effect between the macroscopic and microscopic radiation transport codes, this implementation enabled the detailed calculation of the microdosimetric and nanodosimetric quantities under complex radiation fields, such as proton beam therapy with the spread-out Bragg peak. This PHITS-KURBUC mode is expected to pave the way for next-generation radiation researches, such as radiation physics, radiological protection, medical physics, and radiation biology.

Journal Articles

Re-evaluation of radiation-energy transfer to an extraction solvent in a minor-actinide-separation process based on consideration of radiation permeability

Toigawa, Tomohiro; Tsubata, Yasuhiro; Kai, Takeshi; Furuta, Takuya; Kumagai, Yuta; Matsumura, Tatsuro

Solvent Extraction and Ion Exchange, 39(1), p.74 - 89, 2021/00

 Times Cited Count:0 Percentile:0(Chemistry, Multidisciplinary)

Absorbed-dose estimation is essential for evaluation of the radiation feasibility of minor-actinide-separation processes. We propose a dose-evaluation method based on radiation permeability, with comparisons of heterogeneous structures seen in the solvent-extraction process, such as emulsions forming in the mixture of the organic and aqueous phases. A demonstration of radiation-energy-transfer simulation is performed with a focus on the minor-actinide-recovery process from high-level liquid waste with the aid of the Monte Carlo radiation-transport code PHITS. The simulation results indicate that the dose absorbed by the extraction solvent from alpha ray depends upon the emulsion structure, and that from beta and gamma ray depends upon the mixer-settler-apparatus size. Non-negligible contributions of well-permeable gamma rays were indicated in terms of the plant operation of the minor-actinide-separation process.

Journal Articles

Relation between biomolecular dissociation and energy of secondary electrons generated in liquid water by fast heavy ions

Tsuchida, Hidetsugu*; Kai, Takeshi; Kitajima, Kensei*; Matsuya, Yusuke; Majima, Takuya*; Saito, Manabu*

European Physical Journal D, 74(10), p.212_1 - 212_7, 2020/10

 Times Cited Count:0 Percentile:0.01(Optics)

Fundamental study of interaction between biomolecules and heavy ions in water is very important to predict an initial stage of radiation biological effects. A heavy ion irradiation experiment into droplet target assumed as a biological system in a vacuum was performed to measure production yields of cations and anions for glycine, which was ejected from the droplet target to the vacuum. However, the production mechanisms have been unknown. The PHITS code adapting ion track structure mode was used to analyze the production mechanisms from the dose evaluation at the surface between the vacuum and the water. It is found that induction yields of ionization and excitation, and dissociative electron attachment involved in the secondary electrons were correlated with the production yields of cations and anions of the glycine. The results provide us newly scientific insights to predict an initial stage of radiation biological effects.

Journal Articles

Comprehensive analysis and evaluation of Fukushima Daiichi Nuclear Power Station Unit 2

Yamashita, Takuya; Sato, Ikken; Honda, Takeshi*; Nozaki, Kenichiro*; Suzuki, Hiroyuki*; Pellegrini, M.*; Sakai, Takeshi*; Mizokami, Shinya*

Nuclear Technology, 206(10), p.1517 - 1537, 2020/10

 Times Cited Count:5 Percentile:86.53(Nuclear Science & Technology)

Journal Articles

The Energy-resolved neutron imaging system, RADEN

Shinohara, Takenao; Kai, Tetsuya; Oikawa, Kenichi; Nakatani, Takeshi; Segawa, Mariko; Hiroi, Kosuke; Su, Y.; Oi, Motoki; Harada, Masahide; Iikura, Hiroshi; et al.

Review of Scientific Instruments, 91(4), p.043302_1 - 043302_20, 2020/04

 Times Cited Count:15 Percentile:96.62(Instruments & Instrumentation)

Journal Articles

A Simplified Cluster Analysis of Electron Track Structure for Estimating Complex DNA Damage Yields

Matsuya, Yusuke; Nakano, Toshiaki*; Kai, Takeshi; Shikazono, Naoya*; Akamatsu, Ken*; Yoshii, Yuji*; Sato, Tatsuhiko

International Journal of Molecular Sciences (Internet), 21(5), p.1701_1 - 1701_13, 2020/03

 Times Cited Count:4 Percentile:68.46(Biochemistry & Molecular Biology)

Among various DNA damage induced after irradiation, clustered damage composed of at least two vicinal lesions within from 10 to 20 base pairs is recognized as fatal damage to human tissue. Such clustered damage yields have been evaluated by means of computational approaches; however, the simulation validity has not been sufficiently made yet. Meanwhile, the experimental technique to detect clustered DNA damage has been evolved in the recent decades, so both approaches with simulation and experiment get used to be available for investigating clustered damage recently. In this study, we have developed a simple model for estimating clustered damage yield based on the spatial density of ionization and electronic excitation events obtained by the PHITS code, and compared the computational results to the experimental clustered damage coupled with base damage (BD) measured by gel electrophoresis and atomic force microscopy. The computational results agreed well with experimental fractions of clustered damage of strand breaks (SB) and BD, when the yield ratio of BD/SSB is assumed to be 1.3. From the comparison of complex DNA double-strand break coupled with BDs between simulation and experimental data, it was suggested that aggregation degree of the events along electron track reflects the complexity of DNA damage. The resent simulation enables to quantify the type of clustered damage which cannot be measured in in vitro experiment, which succeeded in interpreting the experimental detection efficiency for clustered BD.

Journal Articles

Verification of dose estimation of Auger electrons emitted from Cu-64 using a combination of FNTD measurements and Monte Carlo simulations

Kusumoto, Tamon*; Matsuya, Yusuke; Baba, Kentaro*; Ogawara, Ryo*; Akselrod, M. S.*; Harrison, J.*; Fomenko, V.*; Kai, Takeshi; Ishikawa, Masayori*; Hasegawa, Sumitaka*; et al.

Radiation Measurements, 132, p.106256_1 - 106256_4, 2020/03

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Internal radiation therapy with Cu-64 concentrates energy deposition in tumor cells by virtue of released Auger electrons with low energy. In our previous study, we have attached the solutions at the surface of Fluorescent Nuclear Track Detector (FNTD) and succeeded in measuring the absorbed doses of Auger electrons registered in FNTD. However, because there are several types of radiation emitted from the source, i.e., beta rays, positron etc., the contribution degree of Auger electron to energy concentration remain uncertain. In this study, we quantitatively analyzed the spatial dose distribution in the FNTD based on Monte Carlo simulation with PHITS and GEANT4, and evaluated high dose deposited by Auger electrons. The dose distribution calculated by the PHITS code is exactly equivalent to that by Geant4. Also, the simulations are well agreement with experimental results. If the contribution of Auger electrons is ignored, the significantly high absorbed dose proximal to the source is not properly reduced. These findings demonstrate that Auger electrons work very effectively to kill cancer cells proximal to Cu-64 source while minimizing damage effects on normal cells distal to the source.

Journal Articles

Depth profiles of energy deposition near incident surface irradiated with swift heavy ions

Ogawa, Tatsuhiko; Ishikawa, Norito; Kai, Takeshi

Nuclear Instruments and Methods in Physics Research B, 461, p.272 - 275, 2019/12

 Times Cited Count:2 Percentile:44.1(Instruments & Instrumentation)

Heavy ion irradiation, which deposits energy locally in materials, is widely used to study new material modification and radiation-induced damage. So far, radial distribution of energy deposition by heavy ions were well studied. By contrast, depth profile of energy deposition was usually assumed to be uniform but the energy deposition near the incident surface is likely suppressed because the delta-rays are pushed by the incident heavy ions. In this study, spatial distribution of energy deposition in the materials exposed to heavy ions is calculated by using a track structure simulation code RITRACKS. The result showed that energy deposition is suppressed in the first 2 nm of water and that beyond 2 nm is uniform. This result can be applied to the materials other than water by scaling with electron density. It is indicated that reactor fuel pins damaged by fission products and the materials modified by heavy ions receive less energy deposition and less radiation effect in the first 2 nm.

Journal Articles

Modeling of yield estimation for DNA strand breaks based on Monte Carlo simulations of electron track structure in liquid water

Matsuya, Yusuke; Kai, Takeshi; Yoshii, Yuji*; Yachi, Yoshie*; Naijo, Shingo*; Date, Hiroyuki*; Sato, Tatsuhiko

Journal of Applied Physics, 126(12), p.124701_1 - 124701_8, 2019/09

 Times Cited Count:10 Percentile:76.05(Physics, Applied)

Biological effects after ionizing radiation exposure arise from initial DNA strand breaks. DNA damage can be estimated from the simulation with both track structure analysis and diffusion of free radicals; however, the simulation is a time-consuming process. In this study, we present a simple model for estimating yields of strand breaks based only on spatial patterns of inelastic interactions (i.e., ionization and electronic excitation) generated by electrons, which are evaluated by PHITS code without considering the production and diffusion of free radicals. In this model, the number of events per track and that of the two events pair within 3.4 nm (corresponding to 10 base pair) were stochastically sampled for calculating SSB and DSB yields, respectively. The calculated results agreed well with other simulations and experimental data on DSB yield and yield ratio of DSB/SSB for the exposure to mono-energetic electrons. The present model also can demonstrate the relative biological effectiveness at the DSB endpoint for various photon exposures. This study indicated that the spatial pattern of inelastic events composed of ionization and electronic excitation is sufficient to obtain the impact of electrons on initial induction to DNA strand break.

Journal Articles

Gamma-ray glow preceding downward terrestrial gamma-ray flash

Wada, Yuki*; Enoto, Teruaki*; Nakamura, Yoshitaka*; Furuta, Yoshihiro; Yuasa, Takayuki*; Nakazawa, Kazuhiro*; Morimoto, Takeshi*; Sato, Mitsuteru*; Matsumoto, Takahiro*; Yonetoku, Daisuke*; et al.

Communications Physics (Internet), 2(1), p.67_1 - 67_9, 2019/06

 Times Cited Count:17 Percentile:89.27(Physics, Multidisciplinary)

JAEA Reports

Biosphere assessment methodology commonly applicable to various disposal concepts

Kato, Tomoko; Fukaya, Yukiko*; Sugiyama, Takeshi*; Nakai, Kunihiro*; Oda, Chie; Oi, Takao

JAEA-Data/Code 2019-002, 162 Pages, 2019/03

JAEA-Data-Code-2019-002.pdf:2.78MB

The radioactive waste generated from Fukushima Daiichi nuclear power station (FDNPS) accident have features such as wide range of radioactivity level (from low to high) and huge amount etc. It would be necessary for the waste from the FDNPS accident to develop suitable disposal concept and to be disposed safely and reasonably. When considering such appropriate disposal concepts in site-generic phase, it is necessary to appropriately develop models and parameters depending on the disposal concepts, such as disposal depth and specification of engineered barrier. In addition, it is desirable to evaluate the safety of repository with common models and parameters independent on the disposal concepts. In the safety assessment of disposal, it is useful to show the difference in performance of repository with "dose" as an indicator of safety assessment. Biosphere model and parameter set and flux-to-dose conversion factors calculated using them are originally dependent on the disposal concepts. However, the biosphere models and the parameter set in safety assessment of near-surface disposal, sub-surface disposal and geological disposal are prepared in each case, and are different according to the age and purpose of the discussion. In this study, an example of biosphere model and parameter-set of groundwater sceinario commonly applicable to various disposal concepts were shown, to calculate flux-to-dose conversion factors, as common indicators independent to disposal concept. And, a set of flux-to-dose conversion factors was also calculated by using the commonly available biosphere model and parameter set. By applying the flux-to-dose conversion factors, it is possible to compare the performance of disposal concepts to the waste generated from FDNPS accident, focusing on the parts depending on the disposal concepts.

JAEA Reports

Progress of general control system for Materials and Life Science Experimental Facility at J-PARC

Sakai, Kenji; Oi, Motoki; Takada, Hiroshi; Kai, Tetsuya; Nakatani, Takeshi; Kobayashi, Yasuo*; Watanabe, Akihiko*

JAEA-Technology 2018-011, 57 Pages, 2019/01

JAEA-Technology-2018-011.pdf:4.98MB

For safely and efficiently operating a spallation neutron source and a muon target, a general control system (GCS) operates within Materials and Life Science Experimental Facility (MLF). GCS administers operation processes and interlocks of many instruments. It consists of several subsystems such as an integral control system (ICS), interlock systems (ILS), shared servers, network system, and timing distribution system (TDS). Although GCS is an independent system that controls the target stations, it works closely with the control systems of the accelerators and other facilities in J-PARC. Since the first beam injection, GCS has operated stably without any serious troubles after modification based on commissioning for operation and control. Then, significant improvements in GCS such as upgrade of ICS by changing its framework software and function enhancement of ILS were proceeded until 2015. In this way, many modifications have been proceeded in the entire GCS during a period of approximately ten years after start of beam operation. Under these situation, it is important to comprehend upgrade history and present status of GCS in order to decide its upgrade plan. This report summarizes outline, structure, roles and functions of GCS in 2017.

Journal Articles

Recent progress of radiation physicochemical process (third part)

Kai, Takeshi; Yokoya, Akinari*; Fujii, Kentaro*; Watanabe, Ritsuko*

Hoshasen Kagaku (Internet), (106), p.21 - 29, 2018/11

It is thought to that the biological effects such as cell death or mutation are induced by complex DNA damage which are formed by several damage sites within a few nm. As the prediction of complex DNA damage at an electron track end, we report our outcomes. These results indicate that DNA damage sites comprising multiple nucleobase lesions with a single strand breaks can be formed by multiple collisions of the electrons within 1 nm. This multiple damage site cannot be processed by base excision repair enzymes. Pre-hydrated electrons can also be produced resulting in an additional base lesion over a few nm from the multi-damage site. This clustered damage site may be finally converted into a double strand break. These DSBs include another base lesion(s) at their termini that escape from the base excision process and which may result in biological effect. Our simulation is useful to reveal phenomena involved in radiation physico-chemistry as well as the DNA damage prediction.

Journal Articles

Spatial resolution test targets made of gadolinium and gold for conventional and resonance neutron imaging

Segawa, Mariko; Oikawa, Kenichi; Kai, Tetsuya; Shinohara, Takenao; Hayashida, Hirotoshi*; Matsumoto, Yoshihiro*; Parker, J. D.*; Nakatani, Takeshi; Hiroi, Kosuke; Su, Y.; et al.

JPS Conference Proceedings (Internet), 22, p.011028_1 - 011028_8, 2018/11

Journal Articles

Occupation sites and valence states of Co dopants in (La, Co)-codoped M-type Sr ferrite; $$^{57}$$Fe and $$^{59}$$Co nuclear magnetic resonance studies

Sakai, Hironori; Hattori, Taisuke; Tokunaga, Yo; Kambe, Shinsaku; Ueda, Hiroaki*; Tanioku, Yasuaki*; Michioka, Chishiro*; Yoshimura, Kazuyoshi*; Takao, Kenta*; Shimoda, Aiko*; et al.

Physical Review B, 98(6), p.064403_1 - 064403_10, 2018/08

 Times Cited Count:6 Percentile:46.5(Materials Science, Multidisciplinary)

To specify preferential occupation sites of Co substituents and to clarify charge and spin states of Co ions in (La, Co)-cosubstituted hexagonal magnetoplumbite-type (M-type) Sr ferrite, $$^{57}$$Fe and $$^{59}$$Co nuclear magnetic resonance (NMR) spectra are measured under zero and external magnetic fields using powdered and single crystalline specimens. To a considerable degree, the charge compensation between La$$^{3+}$$ and Co$$^{2+}$$ works in the equal (La, Co)-codoped case, where more than half of the Co ions are considered to be present in the minority spin $$4f_1$$ sites at the center of the oxygen tetrahedra, with the $$S$$ = 3/2 state carrying a small orbital moment owing to spin-orbit interaction. The remaining small number of high-spin Co$$^{2+}$$ ($$S$$ = 3/2, $$L$$ = 1) ions with unquenched orbital moments would be distributed to the other octahedral $$12k$$, $$2a$$, and $$4f_2$$ sites.

Journal Articles

Features of particle and heavy ion transport code system (PHITS) version 3.02

Sato, Tatsuhiko; Iwamoto, Yosuke; Hashimoto, Shintaro; Ogawa, Tatsuhiko; Furuta, Takuya; Abe, Shinichiro; Kai, Takeshi; Tsai, P.-E.; Matsuda, Norihiro; Iwase, Hiroshi*; et al.

Journal of Nuclear Science and Technology, 55(6), p.684 - 690, 2018/06

 Times Cited Count:332 Percentile:100(Nuclear Science & Technology)

We have upgraded many features of the Particle and Heavy Ion Transport code System (PHITS) and released the new version as PHITS3.02. The accuracy and the applicable energy ranges of the code were greatly improved and extended, respectively, owing to the revisions to the nuclear reaction models and the incorporation of new atomic interaction models. In addition, several user-supportive functions were developed, such as new tallies to efficiently obtain statistically better results, radioisotope source-generation function, and software tools useful for applying PHITS to medical physics. In this paper, we summarize the basic features of PHITS3.02, especially those of the physics models and the functions implemented after the release of PHITS2.52 in 2013.

276 (Records 1-20 displayed on this page)