Refine your search:     
Report No.
 - 
Search Results: Records 1-10 displayed on this page of 10
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Expansion of agriculture in northern cold-climate regions; A Cross-sectoral perspective on opportunities and challenges

Unc, A.*; Altdorff, D.*; Abakumov, E.*; Adl, S.*; Baldursson, S.*; Bechtold, M.*; Cattani, D. J.*; Firbank, L. G.*; Grand, S.*; Gudjonsdottir, M.*; et al.

Frontiers in Sustainable Food Systems (Internet), 5, p.663448_1 - 663448_11, 2021/07

 Times Cited Count:0 Percentile:0(Food Science & Technology)

Agriculture in the boreal and Arctic regions is perceived as marginal, low intensity and inadequate to satisfy the needs of local communities, but another perspective is that northern agriculture has untapped potential to increase the local supply of food and even contribute to the global food system. Policies across northern jurisdictions target the expansion and intensification of agriculture, contextualized for the diverse social settings and market foci in the north. However, the rapid pace of climate change means that traditional methods of adapting cropping systems and developing infrastructure and regulations for this region cannot keep up with climate change impacts. Moreover, the anticipated conversion of northern cold-climate natural lands to agriculture risks a loss of up to 76% of the carbon stored in vegetation and soils, leading to further environmental impacts. The sustainable development of northern agriculture requires local solutions supported by locally relevant policies. There is an obvious need for the rapid development of a transdisciplinary, cross-jurisdictional, long-term knowledge development, and dissemination program to best serve food needs and an agricultural economy in the boreal and Arctic regions while minimizing the risks to global climate, northern ecosystems and communities.

Journal Articles

Progress in the ITER physics basis, 4; Power and particle control

Loarte, A.*; Lipschultz, B.*; Kukushkin, A. S.*; Matthews, G. F.*; Stangeby, P. C.*; Asakura, Nobuyuki; Counsell, G. F.*; Federici, G.*; Kallenbach, A.*; Krieger, K.*; et al.

Nuclear Fusion, 47(6), p.S203 - S263, 2007/06

 Times Cited Count:726 Percentile:96.49(Physics, Fluids & Plasmas)

Progress, since the ITER Physics Basis publication (1999), in understanding the processes that will determine the properties of the plasma edge and its interaction with material elements in ITER is described. Significant progress in experiment area: energy and particle transport, the interaction of plasmas with the main chamber material elements, ELM energy deposition on material elements and the transport mechanism, the physics of plasma detachment and neutral dynamics, the erosion of low and high Z materials, their transport to the core plasma and their migration at the plasma edge, retention of tritium in fusion devices and removal methods. This progress has been accompanied by the development of modelling tools for the physical processes at the edge plasma and plasma-materials interaction. The implications for the expected performance in ITER and the lifetime of the plasma facing materials are discussed.

Journal Articles

Discrepancy between modelled and measured radial electric fields in the scrape-off layer of divertor tokamaks; A Challenge for 2D fluid codes?

Chankin, A. V.*; Coster, D. P.*; Asakura, Nobuyuki; Bonnin, X.*; Conway, G. D.*; Corrigan, G.*; Erents, S. K.*; Fundamenski, W.*; Horacek, J.*; Kallenbach, A.*; et al.

Nuclear Fusion, 47(5), p.479 - 489, 2007/05

 Times Cited Count:30 Percentile:73.38(Physics, Fluids & Plasmas)

Radial electric field in known to be one of the drivers for the parallel ion flow in the SOL. It contributes to the ion Pfirsch-Schluter flow and determines the return parallel flow compensating poloidal ExB drift. It was established recently that 2D fluid codes EDGE2D and SOLPS underestimate the predicted Er in the SOL compared to experimentally measured values. The present work demonstrates that this underestimate can be responsible for the large discrepancy between measured and simulated parallel ion flows in the SOL. Provided radial electric field was modelled correctly by the codes, an increase in the predicted Mach number of the parallel ion flow by up to a factor 3 for the JET could be expected. This would entirely eliminate the difference between the experimentally determined part of the ion flow that depends on the toroidal field direction, and the modelled ion flow attributed to drifts. Discrepancy between measured and simulated flows in ASDEX-Upgrade was also reduced.

Journal Articles

Plasma-surface interaction, scrape-off layer and divertor physics; Implications for ITER

Lipschultz, B.*; Asakura, Nobuyuki; Bonnin, X.*; Coster, D. P.*; Counsell, G.*; Doerner, R.*; Dux, R.*; Federici, G.*; Fenstermacher, M. E.*; Fundamenski, W.*; et al.

Proceedings of 21st IAEA Fusion Energy Conference (FEC 2006) (CD-ROM), 8 Pages, 2007/03

The work of the ITPA SOL/divertor group is reviewed. The high-n nature of ELMs has been elucidated and new measurements have determined that they carry 10-20% of the ELM energy to the far SOL with implications for ITER limiters and the upper divertor. Analysis of ELM measurements imply that the ELM continuously loses energy as it travels across the SOL. The prediction of ITER divertor disruption power loads have been reduced as a result of finding that the divertor footprint broadens during the thermal quench and that the plasma can lose up to 80% of its thermal energy before the thermal quench (not for VDEs or ITBs). Disruption mitigation through massive gas puffing has been successful at reducing divertor heat loads but estimates of the effect on the main chamber walls indicate 10s of kG of Be would be melted/mitigation. Long-pulse studies have shown that the fraction of injected gas that can be recovered after a discharge decreases with discharge length. The use of mixed materials gives rise to a number of potential processes.

Journal Articles

Physics issues and simulation of the JT-60 SA divertor for large heat and particle handling

Asakura, Nobuyuki; Kawashima, Hisato; Shimizu, Katsuhiro; Sakurai, Shinji; Fujita, Takaaki; Takenaga, Hidenobu; Nakano, Tomohide; Kubo, Hirotaka; Higashijima, Satoru; Hayashi, Takao; et al.

Europhysics Conference Abstracts (CD-ROM), 31F, 4 Pages, 2007/00

Divertor design for the JT-60 SA has been progressing in order to handle large heat flux during full pulse duration of 100 s. Divertor should be suitable for single null plasma experiments with the full power injection of 41 MW. The simulation results using 2D fluid (plasma) and Monte-Carlo (neutral) code are summarized. Lower single-null divertor is designed for ITER-like plasma configuration in order to study physics concept of the ITER divertor: control of the plasma detachment. Simulation results for various divertor geometries showed that the vertical target with V-shaped corner can produce plasma detachment near the outer strike-point for medium edge plasma density. It was also demonstrated that the divertor plasma became attached to move the outer strike point above the V-corner, suggesting that recover from sever detachment can be achieved by changing the plasma location. USN divertor will be designed for high-$$beta$$ plasma experiments with the highest shaping plasma of S=6.

Journal Articles

Multi-machine comparisons of H-mode separatrix densities and edge profile behaviour in the ITPA SOL and Divertor Physics Topical Group

Kallenbach, A.*; Asakura, Nobuyuki; Kirk, A.*; Korotkov, A.*; Mahdavi, M. A.*; Mossessian, D.*; Porter, G. D.*

Journal of Nuclear Materials, 337-339, p.381 - 385, 2005/03

 Times Cited Count:57 Percentile:96.27(Materials Science, Multidisciplinary)

Edge profile data for H-mode discharges in 6 tokamaks have been analysed with the main focus on the edge density profile as well as electron temperature and density gradient lengths and steep gradient zone widths. A uniform procedure of data treatment and assignment of the separatrix position via power balance allowed to put the multi-machine data on an even base. The machine size appears to be the leading parameter for the width of the steep edge transport barrier gradient zone, as well as for the temperature decay length at the separatrix. Effects associated with neutral penetration physics are visible in the edge density profile.

Journal Articles

Flux dependence of carbon erosion and implication for ITER

Roth, J.*; Kirschner, A.*; Bohmeyer, W.*; Brezinsek, S.*; Cambe, A.*; Casarotto, E.*; Doerner, R.*; Gauthier, E.*; Federici, G.*; Higashijima, Satoru; et al.

Journal of Nuclear Materials, 337-339, p.970 - 974, 2005/03

 Times Cited Count:95 Percentile:98.93(Materials Science, Multidisciplinary)

In the frame work of the EU Task Force on Plasma-Wall Interaction and the International Tokamak Physics Activity an attempt was made to establish a possible dependence of the chemical erosion yield of carbon on the ion flux, $$Phi$$, involving ion beam experiments, plasma simulators, and fusion devices. After data normalization a fit using Bayesian probability analysis was performed yielding a decrease of the erosion yield with $$Phi$$$$^{-0.54}$$ at high ion fluxes. With this dependence on ion flux a comprehensive description is available for chemical erosion as function of energy, temperature and ion flux. Using this dependence the erosion and redeposition of carbon in the ITER divertor can be calculated using the ERO code and the steady-state plasma scenario given by the ITER team. The resulting gross and net erosion rates are compared to previous estimates using a constant erosion yield of 1.5%. The use of the complete parameter dependence results in an order of magnitude lower erosion, most strongly determined by the temperature dependence and the reduction at the highest fluxes.

Journal Articles

Flux dependence of carbon chemical erosion by deuterium ions

Roth, J.*; Preuss, R.*; Bohmeyer, W.*; Brezinsek, S.*; Cambe, A.*; Casarotto, E.*; Doerner, R.*; Gauthier, E.*; Federici, G.*; Higashijima, Satoru; et al.

Nuclear Fusion, 44(11), p.L21 - L25, 2004/11

 Times Cited Count:93 Percentile:91.38(Physics, Fluids & Plasmas)

Chemical erosion of carbon has been studied in ion beam experiments, and the yield values are available as a function of ion energy and surface temperature. ITER divertor condition, however, cannot be simulated by ion beam. For extrapolating to ITER, the erosion must be investigated in plasma simulators and in SOL or divertors of present fusion devices. In the past, erosion values were reported, but the values showed a wide scatter as a function of ion flux, $$Phi$$. Therefore, a joint attempt was made through the EU Task Force on Plasma-Wall Interaction and the International Tokamak Physics Activity (ITPA) to clarify the flux dependence. For each data point the local plasma conditions were normalized to impact energy of 30 eV, the data were selected for a surface temperature close to the maximum yield or to room temperature, and the diagnostic was calibrated in-situ. Through this procedure, the previous large scatter could be drastically reduced. A fit using Bayesian probability analysis was performed yielding a decrease of the erosion yield with $$Phi$$$$^{-0.54}$$ at high ion fluxes.

Journal Articles

Studies of ELM heat load, SOL flow and carbon erosion from existing Tokamak experiments, and projections for ITER

Asakura, Nobuyuki; Loarte, A.*; Porter, G.*; Philipps, V.*; Lipschultz, B.*; Kallenbach, A.*; Matthews, G.*; Federici, G.*; Kukushkin, A.*; Mahdavi, A.*; et al.

IAEA-CN-94/CT/P-01, 5 Pages, 2002/00

Three important physics issues for the ITER divertor design and operation are summarized based on the experimental and numerical work from multi-machine database (JET, JT-60U, ASDEX Upgrade, DIII-D, Alcator C-Mod and TEXTOR). (i) The energy load associated with Type-I ELMs is of great concern for the lifetime of the ITER divertor target. In order to understand the physics base of the scaling models, the ELM heat and particle transport to the divertor is investigated. Convective transport during ELMs plays an important role in heat transport to the divertor. (ii) Determination of the SOL flow pattern and the driving mechanism has progressed experimentally and numerically. Influences of the drift effects on the SOL and divertor plasma transport were discussed. (iii) Characteristics of chemical yield at two different deposited carbon surfaces, i.e. erosion- and redeposition-dominated areas, have been studied. Progress of understanding the chemical erosion is reviewed.

Journal Articles

Recent progress toward high performance above the greenwald density limit in impurity seeded discharges in limiter and divertor tokamaks

Ongena, J.*; Budny, R.*; Dumortier, P.*; Jackson, G. L.*; Kubo, Hirotaka; Messiaen, A. M.*; Murakami, Masanori*; Strachan, J. D.*; Sydora, R.*; Tokar, M.*; et al.

Physics of Plasmas, 8(5), p.2188 - 2198, 2001/05

 Times Cited Count:47 Percentile:80.5(Physics, Fluids & Plasmas)

no abstracts in English

10 (Records 1-10 displayed on this page)
  • 1