Refine your search:     
Report No.
 - 
Search Results: Records 1-4 displayed on this page of 4
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

ROSA/LSTF tests and RELAP5 posttest analyses for PWR safety system using steam generator secondary-side depressurization against effects of release of nitrogen gas dissolved in accumulator water

Takeda, Takeshi; Onuki, Akira*; Kanamori, Daisuke*; Otsu, Iwao

Science and Technology of Nuclear Installations, 2016, p.7481793_1 - 7481793_15, 2016/00

AA2016-0048.pdf:5.15MB

 Times Cited Count:1 Percentile:10.78(Nuclear Science & Technology)

Journal Articles

Experiments of coolant accumulation in SG U tube and analytical model development

Yamaji, Tatsuya*; Koizumi, Yasuo; Yamazaki, Kohei*; Otake, Hiroyasu*; Hasegawa, Koji*; Onuki, Akira*; Kanamori, Daisuke*

Konsoryu Shimpojiumu 2015 Koen Rombunshu (USB Flash Drive), 2 Pages, 2015/08

Experiments of condensing counter-current two-phase flow in a vertical pipe were performed. This study was intended to examine water accumulation in the up-flow side of steam generator U-tubes of a PWR during the reflux cooling stage of a small break LOCA. It has been apprehended that the water accumulation may result in temporary core liquid level depression. The inner diameter and the length of a test flow channel used in the experiments were 18 mm and 4 m, respectively. The experiments were performed by using steam and water at 0.1 MPa. Two kinds of experiments were conducted; visualization experiments by using a transparent test section and quantitative water accumulation evaluation experiments by using a brass test section. Even if water on the inner surface of the test pipe could not flow downward at the lower portion of the test pipe, a part of water became to flow downward at the upper portion of the test pipe since steam velocity decreased because of condensation. Thus, two-phase mixture level was formed in the upper portion of the test pipe, which resulted in the water accumulation in the pipe. The model to predict the water accumulation was proposed. It predicted the water accumulation reasonably well.

Oral presentation

Study on model development for liquid accumulation in steam generator U-tube, 5; Experimental results on single and multi-channels

Yamazaki, Kohei*; Otake, Hiroyasu*; Hasegawa, Koji*; Yamaji, Tatsuya*; Koizumi, Yasuo; Onuki, Akira*; Kanamori, Daisuke*

no journal, , 

Experiments of condensing counter-current two-phase flow in a vertical pipe were performed. This study was intended to examine water accumulation in the up-flow side of steam generator U-tubes of a PWR during the reflux cooling stage of a small break LOCA. It has been apprehended that the water accumulation may result in temporary core liquid level depression. Two kind experiments were performed; single channel experiments and parallel four channel experiments. The inner diameter and the length of the test flow channels were 18 mm and 4 m, respectively. The experiments were performed by using steam and water at 0.1 MPa. It was confirmed that even if water on the inner surface of the test pipe could not flow downward at the lower portion of the test pipe, a part of water became to flow downward at the upper portion of the test pipe since steam velocity decreased because of condensation. Thus, two-phase mixture level was formed in the upper portion of the test pipe, which resulted in the water accumulation in the pipe. The water accumulation in the test pipe in the four channel experiments was smaller than in the single channel experiments. In the four channel experiments, the condensing rate of steam decreased as steam flowed upward although the steam condensing rate was uniform along the channel in the single channel experiments. This difference in the experimental condition between the two kind experiments might result in smaller water accumulation in the four channel experiments than in the single channel experiments.

Oral presentation

Study on coolant accumulation in sg U tube upflow side during natural circulation reflux cooling condition of small break loss-of-coolant accidents of pressurized water reactors

Koizumi, Yasuo; Yamaji, Tatsuya*; Yamazaki, Kohei*; Otake, Hiroyasu*; Hasegawa, Koji*; Onuki, Akira*; Kanamori, Daisuke*

no journal, , 

Experiments of condensing counter-current two-phase flow in a vertical pipe were performed. This study was intended to examine water accumulation in the up-flow side of steam generator U-tubes of a PWR during the reflux cooling stage of a small break LOCA. It has been apprehended that the water accumulation may result in temporary core liquid level depression. The inner diameter and the length of a test flow channel used in the experiments were 18 mm and 4 m, respectively. The experiments were performed by using steam and water at 0.1 MPa. Two kinds of experiments were conducted; visualization experiments by using a transparent test section and quantitative water accumulation evaluation experiments by using a brass test section. Even if water on the inner surface of the test pipe could not flow downward at the lower portion of the test pipe, a part of water became to flow downward at the upper portion of the test pipe since steam velocity decreased because of condensation. Thus, two-phase mixture level was formed in the upper portion of the test pipe, which resulted in the water accumulation in the pipe. The model to predict the water accumulation was proposed. It predicted the water accumulation reasonably well.

4 (Records 1-4 displayed on this page)
  • 1