Refine your search:     
Report No.
 - 
Search Results: Records 1-1 displayed on this page of 1
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Artificial neural network molecular mechanics of iron grain boundaries

Shiihara, Yoshinori*; Kanazawa, Ryosuke*; Matsunaka, Daisuke*; Lobzenko, I.; Tsuru, Tomohito; Koyama, Masanori*; Mori, Hideki*

Scripta Materialia, 207, p.114268_1 - 114268_4, 2022/01

 Times Cited Count:12 Percentile:73.14(Nanoscience & Nanotechnology)

This study reports grain boundary (GB) energy calculations for 46 symmetric-tilt GBs in $$alpha$$-iron using molecular mechanics based on an artificial neural network (ANN) potential and compares the results with calculations based on the density functional theory (DFT), the embedded atom method (EAM), and the modified EAM (MEAM). The results by the ANN potential are in excellent agreement with those of the DFT (5% on average), while the EAM and MEAM significantly differ from the DFT results (about 27% on average). In a uniaxial tensile calculation of GB, the ANN potential reproduced the brittle fracture tendency of the GB observed in the DFT while the EAM and MEAM mistakenly showed ductile behaviors. These results demonstrate the effectiveness of the ANN potential in calculating grain boundaries of iron, which is in high demand in modern industry.

1 (Records 1-1 displayed on this page)
  • 1