Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 59

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Complementary characterization of radioactivity produced by repetitive laser-driven proton beam using shot-to-shot proton spectral measurement and direct activation measurement

Ogura, Koichi; Shizuma, Toshiyuki; Hayakawa, Takehito; Yogo, Akifumi; Nishiuchi, Mamiko; Orimo, Satoshi; Sagisaka, Akito; Pirozhkov, A. S.; Mori, Michiaki; Kiriyama, Hiromitsu; et al.

Japanese Journal of Applied Physics, 51(4), p.048003_1 - 048003_2, 2012/04

 Times Cited Count:2 Percentile:10.01(Physics, Applied)

A proton beam driven by a repetitive high-intensity-laser is utilized to induce a $$^{7}$$Li(p,n)$$^{7}$$Be nuclear reaction. The total activity of $$^{7}$$Be are evaluated by two different methods. The activity obtained measuring the decay $$gamma$$-rays after 1912 shots at 1 Hz is 1.7$$pm$$0.2 Bq. This is in good agreement with 1.6$$pm$$0.3 Bq evaluated from the proton energy distribution measured using a time-of-flight detector and the nuclear reaction cross-sections. We conclude that the production of activity can be monitored in real time using the time-of-flight-detector placed inside a diverging proton beam coupled with a high-speed signal processing system.

Journal Articles

Deuterium concentration of co-deposited carbon layer produced at gap of wall tiles

Nobuta, Yuji*; Yokoyama, Kenji; Kanazawa, Jun*; Yamauchi, Yuji*; Hino, Tomoaki*; Suzuki, Satoshi; Ezato, Koichiro; Enoeda, Mikio; Akiba, Masato

Journal of Nuclear Materials, 417(1-3), p.607 - 611, 2011/10

 Times Cited Count:2 Percentile:20.43(Materials Science, Multidisciplinary)

Journal Articles

Laser-driven proton generation with a thin-foil target

Sagisaka, Akito; Pirozhkov, A. S.; Mori, Michiaki; Yogo, Akifumi; Ogura, Koichi; Orimo, Satoshi; Nishiuchi, Mamiko; Ma, J.*; Kiriyama, Hiromitsu; Kanazawa, Shuhei; et al.

NIFS-PROC-85, p.30 - 33, 2011/02

The experiment of proton generation is performed for developing the laser-driven ion source. We observe proton signals in the laser-plasma interaction by using a thin-foil target. To get higher energy protons the size of the preformed plasma is reduced by changing the laser contrast level. In the high-contrast laser pulse case the maximum energy of the protons generated at rear side of the target increases.

Journal Articles

Efficient multi-keV X-ray generation from a high-Z target irradiated with a clean ultra-short laser pulse

Zhang, Z.*; Nishikino, Masaharu; Nishimura, Hiroaki*; Kawachi, Tetsuya; Pirozhkov, A. S.; Sagisaka, Akito; Orimo, Satoshi; Ogura, Koichi; Yogo, Akifumi; Okano, Yasuaki*; et al.

Optics Express (Internet), 19(5), p.4560 - 4565, 2011/02

 Times Cited Count:17 Percentile:66.91(Optics)

$$Kalpha$$ line emission from Mo and Ag plate were experimentally studied by using ultra-high intensity, clean femtosecond laser pulses. Absolutely yield of $$Kalpha$$ X-rays at 17 keV from Mo and 22 keV from Ag were measured as a function of the laser pulse contrast ratio and irradiation intensity. Significant enhancement of $$Kalpha$$ yields were obtained for both Mo and Ag with higher contrast ratios and high irradiance. The conversion efficiencies of 4.28 $$times$$ 10$$^{-5}$$/sr for Mo and 4.84 $$times$$ 10$$^{-5}$$/sr for Ag, the highest values ever obtained, have been demonstarted with the contrast ratio of 10$$^{-10}$$ to 10$$^{-11}$$.

Journal Articles

Proton generation and terahertz radiation from a thin-foil target with a high-intensity laser

Sagisaka, Akito; Pirozhkov, A. S.; Mori, Michiaki; Yogo, Akifumi; Ogura, Koichi; Orimo, Satoshi; Nishiuchi, Mamiko; Ma, J.*; Kiriyama, Hiromitsu; Kanazawa, Shuhei; et al.

Reza Kenkyu, 38(9), p.702 - 705, 2010/09

High-intensity laser and thin-foil interactions produce high-energy particles, hard X-ray, high-order harmonics, and terahertz (THz) radiation. A proton beam driven by a high-intensity laser has received attention as a compact ion source for medical applications. In this study we have tested simultaneous generation of protons and THz radiation from a thin-foil target. We use a Ti:sapphire laser system (J-KAREN) at JAEA. A laser beam is focused by an off-axis parabolic mirror at the thin-foil target. We observed the high-energy proton in the rear side of the target and THz radiation in the reflected direction. Next, high energy protons are observed by reducing the size of preformed plasma.

Journal Articles

Test beam-line for laser-driven proton therapy

Sakaki, Hironao; Nishiuchi, Mamiko; Hori, Toshihiko; Bolton, P.; Yogo, Akifumi; Ogura, Koichi; Sagisaka, Akito; Pirozhkov, A. S.; Orimo, Satoshi; Kondo, Kiminori; et al.

Proceedings of 7th Annual Meeting of Particle Accelerator Society of Japan (DVD-ROM), p.312 - 315, 2010/08

The beam transport test is carried out through the test beam line of the laser-driven proton accelerator which consists of the phase rotation cavity, PMQ, and bending magnet. The laser system used is J-KAREN at JAEA. The final transmitted bunch duration and transverse profile are well predicted by the PARMILA particle transport code by assuming relatively low initial current of the proton beam. The most probable explanation for this is the space charge neutralization by the laser-plasma-electrons.

Journal Articles

Measured and simulated transport of 1.9 MeV laser-accelerated proton bunches through an integrated test beam line at 1 Hz

Nishiuchi, Mamiko; Sakaki, Hironao; Hori, Toshihiko; Bolton, P.; Ogura, Koichi; Sagisaka, Akito; Yogo, Akifumi; Mori, Michiaki; Orimo, Satoshi; Pirozhkov, A. S.; et al.

Physical Review Special Topics; Accelerators and Beams, 13(7), p.071304_1 - 071304_7, 2010/07

 Times Cited Count:25 Percentile:81.88(Physics, Nuclear)

A laser-driven repetition-rated 1.9 MeV proton beam line composed of permanent quadrupole magnets (PMQs), a radio frequency (rf) phase rotation cavity, and a tunable monochromator is developed to evaluate and to test the simulation of laser-accelerated proton beam transport through an integrated system for the first time. In addition, the proton spectral modulation and focusing behavior of the rf phase rotationcavity device is monitored with input from a PMQ triplet. In the 1.9 MeV region we observe very weakproton defocusing by the phase rotation cavity. The final transmitted bunch duration and transverse profile are well predicted by the PARMILA particle transport code. The transmitted proton beam duration of 6 ns corresponds to an energy spread near 5% for which the transport efficiency is simulated to be 10%. The predictive capability of PARMILA suggests that it can be useful in the design of future higher energy transport beam lines as part of an integrated laser-driven ion accelerator system.

Journal Articles

Laser-driven proton accelerator for medical application

Nishiuchi, Mamiko; Sakaki, Hironao; Hori, Toshihiko; Bolton, P.; Ogura, Koichi; Sagisaka, Akito; Yogo, Akifumi; Mori, Michiaki; Orimo, Satoshi; Pirozhkov, A. S.; et al.

Proceedings of 1st International Particle Accelerator Conference (IPAC '10) (Internet), p.88 - 90, 2010/05

The concept of a compact ion particle accelerator has become attractive in view of recent progress in laser-driven ion acceleration. We report here the recent progress in the laser-driven proton beam transport at the Photo Medical Research Center (PMRC) at JAEA, which is established to address the challenge of laser-driven ion accelerator development for ion beam cancer therapy.

Journal Articles

Control of laser-accelerated proton beams by modifying the target density with ASE

Yogo, Akifumi; Kiriyama, Hiromitsu; Mori, Michiaki; Esirkepov, T. Z.; Ogura, Koichi; Sagisaka, Akito; Orimo, Satoshi; Nishiuchi, Mamiko; Pirozhkov, A. S.; Nagatomo, Hideo*; et al.

European Physical Journal D, 55(2), p.421 - 425, 2009/11

 Times Cited Count:3 Percentile:21.53(Optics)

We demonstrate the laser-ion acceleration from a near-critical density plasma, when amplified spontaneous emission (ASE) was used to convert a solid foil target into the lower-density target. In this work, a direct comparison is made by changing the ASE intensity by factor 3 in order to investigate the target density-dependency of the laser-ion acceleration. The beam direction of high-energy component is successfully controlled by modifying the target density. The near-critical density plasma can be a favorable target to control the beam direction to be dependent on its energy.

Journal Articles

Observation of UV harmonics from a thin-foil target in the high-intensity laser-driven proton generation

Sagisaka, Akito; Pirozhkov, A. S.; Ma, J.-L.; Mori, Michiaki; Yogo, Akifumi; Ogura, Koichi; Orimo, Satoshi; Nishiuchi, Mamiko; Kiriyama, Hiromitsu; Kanazawa, Shuhei; et al.

Journal of Plasma and Fusion Research SERIES, Vol.8, p.464 - 467, 2009/09

We measure the UV harmonics from a thin-foil target by changing the laser pulse duration in the high-energy proton generation. The maximum proton energies are around 1 MeV. In the case of the $$sim$$500 fs, the peaks of UV harmonics up to fourth-order clearly appear. The spectra are broadened and shifted at the pulse durations of $$sim$$100 fs and $$sim$$30 fs.

Journal Articles

Ion acceleration using temporally-controlled high-intensity laser pulses

Yogo, Akifumi; Daido, Hiroyuki; Mori, Michiaki; Kiriyama, Hiromitsu; Bulanov, S. V.; Bolton, P. R.; Esirkepov, T. Z.; Ogura, Koichi; Sagisaka, Akito; Orimo, Satoshi; et al.

Reza Kenkyu, 37(6), p.449 - 454, 2009/06

The acceleration of protons driven by a high-intensity laser is comprehensively investigated via control of the target density by using ASE just before the time of the main-laser interaction. Two cases were investigated for which the ASE intensity differed by three orders of magnitude: In the low contrast case the beam centre for higher energy protons is shifted closer to the laser-propagation direction of 45$$^{circ}$$, while the center of lower-energy beam remains near the target normal direction. Particle-in-cell simulations reveal that the characteristic proton acceleration is due to the quasistatic magnetic field on the target rear side with the magnetic pressure sustaining a charge separation electrostatic field.

Journal Articles

Proton-induced nuclear reactions using compact high-contrast high-intensity laser

Ogura, Koichi; Shizuma, Toshiyuki; Hayakawa, Takehito; Yogo, Akifumi; Nishiuchi, Mamiko; Orimo, Satoshi; Sagisaka, Akito; Pirozhkov, A. S.; Mori, Michiaki; Kiriyama, Hiromitsu; et al.

Applied Physics Express, 2(6), p.066001_1 - 066001_3, 2009/05

 Times Cited Count:14 Percentile:52.43(Physics, Applied)

Protons with energies up to 3.5 MeV have been generated by a 10 Hz compact laser with an intensity of about 10$$^{20}$$ W/cm$$^{2}$$, focused on a 7.5 mm thick polyimide target. These protons were used to induce a nuclear reaction of $$^{11}$$B(p,n)$$^{11}$$C. A total activity of 11.1 Bq was created after 60-shot laser irradiation. The possibility of thin layer activation (TLA) using a high-intensity ultra-short pulsed laser is discussed.

Journal Articles

Application of laser-accelerated protons to the demonstration of DNA double-strand breaks in human cancer cells

Yogo, Akifumi; Sato, Katsutoshi; Nishikino, Masaharu; Mori, Michiaki; Teshima, Teruki*; Numasaki, Hodaka*; Murakami, Masao*; Demizu, Yusuke*; Akagi, Takashi*; Nagayama, Shinichi*; et al.

Applied Physics Letters, 94(18), p.181502_1 - 181502_3, 2009/05

 Times Cited Count:95 Percentile:94.5(Physics, Applied)

Journal Articles

Focusing and spectral enhancement of a repetition-rated, laser-driven, divergent multi-MeV proton beam using permanent quadrupole magnets

Nishiuchi, Mamiko; Daito, Izuru; Ikegami, Masahiro; Daido, Hiroyuki; Mori, Michiaki; Orimo, Satoshi; Ogura, Koichi; Sagisaka, Akito; Yogo, Akifumi; Pirozhkov, A. S.; et al.

Applied Physics Letters, 94(6), p.061107_1 - 061107_3, 2009/02

 Times Cited Count:54 Percentile:87.76(Physics, Applied)

A pair of conventional permanent magnet quadrupoles is used to focus a 2.4 MeV laser-driven proton beam at a 1 Hz repetition rate. The magnetic field strengths are 55 T/m and 60 T/m for the first and second quadrupoles respectively. The proton beam is focused to a spot size (full width at half maximum) of 2.7$$times$$8 mm$$^{2}$$ at a distance of 650 mm from the source. This result is in good agreement with a Monte Carlo particle trajectory simulation.

Journal Articles

New method to measure the rise time of a fast pulse slicer for laser ion acceleration research

Mori, Michiaki; Yogo, Akifumi; Kiriyama, Hiromitsu; Nishiuchi, Mamiko; Ogura, Koichi; Orimo, Satoshi; Ma, J.*; Sagisaka, Akito; Kanazawa, Shuhei; Kondo, Shuji; et al.

IEEE Transactions on Plasma Science, 36(4), p.1872 - 1877, 2008/08

 Times Cited Count:7 Percentile:30.94(Physics, Fluids & Plasmas)

A dependence of cut-off proton kinetic energy on laser prepulse duration has been observed. ASE pedestal duration is controlled by a fast electro-optic pulse slicer where the risetime is estimated to be 130 ps. We demonstrate a new correlated spectral technique for determining this risetime using a stretched, frequency chirped pulse.

Journal Articles

"J-KAREN"; High intensity laser

Kiriyama, Hiromitsu; Mori, Michiaki; Nakai, Yoshiki; Shimomura, Takuya*; Tanoue, Manabu*; Akutsu, Atsushi; Okada, Hajime; Motomura, Tomohiro*; Kondo, Shuji; Kanazawa, Shuhei; et al.

JAEA-Conf 2008-007, p.13 - 16, 2008/08

One of the main bottlenecks for the applications of ultrashort and ultrahigh-peak power lasers in high-field physics is a temporal contrast of the pulses. In ultrahigh-peak power lasers, a nanosecond background of the amplified spontaneous emission (ASE) is generated at the same time as the femtosecond pulse. This background is mostly generated in the preamplifier (regenerative, multipass amplifier). Even though the contrast level is usually in the range from 10$$^{-5}$$ to 10$$^{-6}$$, this level is not sufficiently low at relativistic intensities greater than 10$$^{18} $$W/cm$$^{2}$$ to avoid unwanted pre-plasmas generation. We demonstrated a high-contrast, high-peak power laser with optical parametric chirped-pulse amplification (OPCPA). With the use of OPCPA, contrast is enhanced to better than 7$$times$$10$$^{-9}$$ in a few picoseconds before the main pulse, which corresponds to an improvement of three to four orders in magnitude compared with conventional systems.

JAEA Reports

Fabrication of irradiation capsule for IASCC irradiation tests, 3; Irradiation capsule for ECP sensor (Joint research)

Ide, Hiroshi; Izumo, Hironobu; Ishida, Takuya; Saito, Takashi; Hanawa, Satoshi; Matsui, Yoshinori; Iwamatsu, Shigemi; Kanazawa, Yoshiharu; Miwa, Yukio; Kaji, Yoshiyuki; et al.

JAEA-Technology 2008-013, 32 Pages, 2008/03

JAEA-Technology-2008-013.pdf:17.96MB

Dissolved oxygen ions and chlorine ions concentration have been used as an evaluation index of stress corrosion cracking behavior for the light water reactor materials. In addition to these parameters, Electrochemical Corrosion Potential (ECP) was commonly used as the evaluation. Therefore, as a part of the IASCC irradiation tests, the irradiation test of the iron oxide type and the platinum type of ECP sensor were carried out under the BWR coolant condition. As a result, some measurements of ECP sensor succeed. However, it was clear that the improvement of ECP sensor is necessary. In this report, developed irradiation capsule ECP sensor is reported.

Journal Articles

Simultaneous proton and X-ray imaging with femtosecond intense laser driven plasma source

Orimo, Satoshi; Nishiuchi, Mamiko; Daido, Hiroyuki; Yogo, Akifumi; Ogura, Koichi; Sagisaka, Akito; Li, Z.*; Pirozhkov, A. S.; Mori, Michiaki; Kiriyama, Hiromitsu; et al.

Japanese Journal of Applied Physics, Part 1, 46(9A), p.5853 - 5858, 2007/09

 Times Cited Count:16 Percentile:55.33(Physics, Applied)

A laser-driven proton beam with a maximum energy of a few MeV is stably obtained using an ultra-short and high-intensity Titanium Sapphire laser. At the same time, keV X-ray is also generated at almost the same place where protons are emitted. Here, we show the successful demonstration of simultaneous proton and X-ray projection images of a test sample placed close to the source with a resolution of $$sim$$10$$mu$$m, which is determined from the source sizes. Although the experimental configuration is very simple, the simultaneity is better than a few hundreds of ps. A CR-39 track detector and imaging plate, which are placed as close as possible to the CR-39, are used as detectors of protons and X-ray. The technique is applicable to the precise observation of microstructures.

Journal Articles

Development of laser driven proton sources and their applications

Daido, Hiroyuki; Sagisaka, Akito; Ogura, Koichi; Orimo, Satoshi; Nishiuchi, Mamiko; Mori, Michiaki; Ma, J.-L.; Pirozhkov, A. S.; Kiriyama, Hiromitsu; Kanazawa, Shuhei; et al.

Proceedings of 7th Pacific Rim Conference on Lasers and Electro-Optics (CLEO-PR 2007) (CD-ROM), p.77 - 79, 2007/00

We are developing a proton accelerator using an intense lasers with a focused intensity of $$>$$ 10$$^{17}$$ W/cm$$^{2}$$. To monitor proton energy spectra as well as plasma parameters at each laser shot, we are using real time detectors. The proton energy of MeV is stably obtained for applications.

Journal Articles

Intense femto-second laser-driven X-ray source coupled with multiple directional quantum beams for applications

Daido, Hiroyuki; Sagisaka, Akito; Ogura, Koichi; Orimo, Satoshi; Nishiuchi, Mamiko; Yogo, Akifumi; Mori, Michiaki; Li, Z.*; Kiriyama, Hiromitsu; Kanazawa, Shuhei; et al.

X-Ray Lasers 2006; Springer Proceedings in Physics, Vol.115, p.595 - 605, 2007/00

At present, using ultra-short high intensity lasers at APRC, JAEA Kansai photon research institute, we are developing laser driven multiple quantum beams such as protons, X-rays, electrons and THz waves. These beams are perfectly synchronized with each other. The pulse duration of each beam is lass than a pico-second. They have sharp directionality with high brightness. If we properly combined these, we have new pump-probe techniques for various applications.

59 (Records 1-20 displayed on this page)