Refine your search:     
Report No.
 - 
Search Results: Records 1-13 displayed on this page of 13
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Neutron shielding reinforcement in the JMTR Hot Laboratory

Ito, Masayasu; Kawamata, Kazuo; Tayama, Yoshinobu; Kanazawa, Yoshiharu; Yonekawa, Minoru; Nakagawa, Tetsuya; Omi, Masao; Iwamatsu, Shigemi

JAEA-Technology 2011-022, 44 Pages, 2011/07

JAEA-Technology-2011-022.pdf:3.29MB

Hot laboratory are facilities that execute the post irradiation examination of sample irradiated in material testing reactors etc. The handling of high burn-up fuel is scheduled in the JMTR (Japan Materials Testing Reactor) Hot Laboratory with JMTR re-operate in FY 2011. This report describes evaluation, production and installation of shielding of the hot cells in the JMTR Hot Laboratory.

JAEA Reports

Replacement of power manipulator in the No.2 concrete cells of JMTR Hot Laboratory

Iwamatsu, Shigemi; Kanazawa, Yoshiharu; Hayashi, Koji; Sozawa, Shizuo; Nakagawa, Tetsuya

JAEA-Testing 2009-006, 17 Pages, 2010/03

JAEA-Testing-2009-006.pdf:6.0MB

This report is concerned with replacement of the power manipulator in the No.2 concrete cell of JMTR Hot Laboratory in the 2008 fiscal year. It was carried out the replacement of power manipulator mainly on a chassis part including the remarkably aged wrist, shoulder and controller. The specifications of the machinery to be replaced, the installation and the acceptance inspection were described.

JAEA Reports

Renewal plan of the JMTR Hot Laboratory for the irradiation test of high burn-up fuels in FY2008

Sozawa, Shizuo; Nakagawa, Tetsuya; Iwamatsu, Shigemi; Hayashi, Koji; Tayama, Yoshinobu; Kawamata, Kazuo; Yonekawa, Minoru; Taguchi, Taketoshi; Kanazawa, Yoshiharu; Omi, Masao

JAEA-Technology 2009-070, 27 Pages, 2010/03

JAEA-Technology-2009-070.pdf:7.46MB

Refurbishment of the Japan Materials Testing Reactor (JMTR), which is recognized as one of important facilities in Japan for safety research, is in progress by the JAEA. In Extensive safety research of light-water reactor (LWR) fuels and materials under a contract with the Nuclear and Industrial Safety Agency of Ministry of Economy, Trade and Industry of Japan, the irradiation tests are planned in order to examine integrity of the LWR fuels and structure materials. For the irradiation tests of high burnup fuels and irradiated materials in the JMTR, modification of the hot laboratory facilities are needed, which are (1) making of application books for strengthening JMTR hot-lab. cell-shielding, (2) the capsule assembling device of detailed design, (3) safety analysis for domestic transportation cask and (4) confirmatory testing of diamond drill of fuel-rod center-hole processing device.

JAEA Reports

Renewal plan of the JMTR Hot Laboratory for the Irradiation test of high burn-up fuels in FY2007

Sozawa, Shizuo; Nakagawa, Tetsuya; Omi, Masao; Hayashi, Koji; Iwamatsu, Shigemi; Kawamata, Kazuo; Kato, Yoshiaki; Kanazawa, Yoshiharu

JAEA-Technology 2009-069, 32 Pages, 2010/03

JAEA-Technology-2009-069.pdf:7.33MB

Refurbishment of the Japan Materials Testing Reactor (JMTR), which is recognized as one of important facilities in Japan for safety research, is in progress by the JAEA. In Extensive safety research of light-water reactor (LWR) fuels and materials under a contract with the Nuclear and Industrial Safety Agency of Ministry of Economy, Trade and Industry of Japan, the irradiation tests are planned in order to examine integrity of the LWR fuels and structure materials. For the irradiation tests of high burnup fuels and irradiated materials in the JMTR, modification of the hot laboratory facilities are needed, which are (1) strengthening JMTR hot-lab. cell-shielding, (2) the capsule assembling device, (3) domestic transportation cask, (4) fuel-rod center-hole processing device, (5) master-slave manipulators, (6) power manipulator, and (7) scanning electron microscope.

JAEA Reports

Development of welding techniques for assembling of IASCC Test Capsule

Shibata, Akira; Kawamata, Kazuo; Taguchi, Taketoshi; Kaji, Yoshiyuki; Shimizu, Michio*; Kanazawa, Yoshiharu; Matsui, Yoshinori; Iwamatsu, Shigemi; Sozawa, Shizuo; Tayama, Yoshinobu; et al.

JAEA-Technology 2008-029, 40 Pages, 2008/03

JAEA-Technology-2008-029.pdf:25.78MB

Irradiation assisted stress corrosion cracking (IASCC) is considered to be one of the key issues from a viewpoint of the life management of core components in the aged Light Water Reactors. The in-situ crack extension examination and the in-situ constant load tensile test in the reactor are required for the study of IASCC. There are, however, some technical hurdles to be overcome for the experiments. For this in-situ IASCC test, techniques for assembling pre-irradiated specimens into an capsule in a hot cell by remote handling are necessary. In this report, I describe the establishment of those remote assembling techniques and development of new welding apparatus and the TIG upset welding for stainless tube of 3 mm in thickness. Already IASCC capsules having pre-irradiated CT specimens were remotely assembled using these techniques in the hot cell for performing crack growth tests under irradiation in JMTR. And eight in-situ IASCC capsules have been finished successfully in JMTR.

JAEA Reports

Fabrication of irradiation capsule for IASCC irradiation tests, 3; Irradiation capsule for ECP sensor (Joint research)

Ide, Hiroshi; Izumo, Hironobu; Ishida, Takuya; Saito, Takashi; Hanawa, Satoshi; Matsui, Yoshinori; Iwamatsu, Shigemi; Kanazawa, Yoshiharu; Miwa, Yukio; Kaji, Yoshiyuki; et al.

JAEA-Technology 2008-013, 32 Pages, 2008/03

JAEA-Technology-2008-013.pdf:17.96MB

Dissolved oxygen ions and chlorine ions concentration have been used as an evaluation index of stress corrosion cracking behavior for the light water reactor materials. In addition to these parameters, Electrochemical Corrosion Potential (ECP) was commonly used as the evaluation. Therefore, as a part of the IASCC irradiation tests, the irradiation test of the iron oxide type and the platinum type of ECP sensor were carried out under the BWR coolant condition. As a result, some measurements of ECP sensor succeed. However, it was clear that the improvement of ECP sensor is necessary. In this report, developed irradiation capsule ECP sensor is reported.

JAEA Reports

Fabrication of irradiation capsule for IASCC irradiation tests, 2; Irradiation capsule for crack propagation test (Joint research)

Ide, Hiroshi; Matsui, Yoshinori; Kawamata, Kazuo; Taguchi, Taketoshi; Kanazawa, Yoshiharu; Onuma, Yuichi; Watanabe, Hiroyuki; Inoue, Shuichi; Izumo, Hironobu; Ishida, Takuya; et al.

JAEA-Technology 2008-012, 36 Pages, 2008/03

JAEA-Technology-2008-012.pdf:10.09MB

It is known that Irradiation Assisted Stress Corrosion Cracking (IASCC) occurs when austenitic stainless steel components used for light water reactor (LWR) are irradiated for a long period. In order to evaluate the high aging of the nuclear power plant, the study of IASCC becomes the important problem. The specimens irradiated in the reactor were evaluated by post irradiation examination in the past study. For the appropriate evaluation of IASCC, It is necessary to test it under the simulated LWR conditions; temperature, water chemistry and irradiation conditions. In order to perform in-pile SCC test, saturated temperature capsule (SATCAP) was developed. There are crack growth test, crack propagation test and so on for in-pile SCC test. In this report, SATCAP for crack propagation test is reported.

JAEA Reports

Fabrication of irradiation capsule for IASCC irradiation tests, 1; Irradiation capsule for crack growth test (Joint research)

Ide, Hiroshi; Matsui, Yoshinori; Kawamata, Kazuo; Taguchi, Taketoshi; Kanazawa, Yoshiharu; Onuma, Yuichi; Watanabe, Hiroyuki; Inoue, Shuichi; Izumo, Hironobu; Ishida, Takuya; et al.

JAEA-Technology 2008-011, 46 Pages, 2008/03

JAEA-Technology-2008-011.pdf:19.39MB

It is known that Irradiation Assisted Stress Corrosion Cracking (IASCC) occurs when austenitic stainless steel components used for light water reactor (LWR) are irradiated for a long period. In order to evaluate the high aging of the nuclear power plant, the study of IASCC becomes the important problem. The specimens irradiated in the reactor were evaluated by post irradiation examination in the past study. For the appropriate evaluation of IASCC, It is necessary to test it under the simulated LWR conditions; temperature, water chemistry and irradiation conditions. In order to perform in-pile SCC test, saturated temperature capsule (SATCAP) was developed. There are crack growth test, crack propagation test and so on for in-pile SCC test. In this report, SATCAP for crack growth test is reported.

Journal Articles

Remote-welding technique for assembling In-Pile IASCC capsule in hot cell

Kawamata, Kazuo; Ishii, Toshimitsu; Kanazawa, Yoshiharu; Iwamatsu, Shigemi; Omi, Masao; Shimizu, Michio; Matsui, Yoshinori; Ugachi, Hirokazu; Kaji, Yoshiyuki; Tsukada, Takashi; et al.

JAEA-Conf 2006-003, p.115 - 125, 2006/05

no abstracts in English

Journal Articles

Development of in-pile capsule for IASCC study at JMTR

Matsui, Yoshinori; Hanawa, Satoshi; Ide, Hiroshi; Tobita, Masahiro*; Hosokawa, Jinsaku; Onuma, Yuichi; Kawamata, Kazuo; Kanazawa, Yoshiharu; Iwamatsu, Shigemi; Saito, Junichi; et al.

JAEA-Conf 2006-003, p.105 - 114, 2006/05

Irradiation assisted stress corrosion cracking (IASCC) caused by the simultaneous effects of radiation, stress and high temperature water environment is considered to be one of the critical concerns of in-core structural materials not only for light water reactors (LWRs) but also for water-cooled fusion reactors. In the research field of IASCC, post-irradiation examinations (PIEs) for irradiated materials have been mainly carried out, because there are many difficulties on SCC tests under neutron irradiation environment. Hence we have embarked on a development of the test techniques for performing the in-pile SCC tests. In this paper, we describe the developed several in-pile test techniques and the current status of in-pile SCC tests at Japan Materials Testing Reactor (JMTR).

Oral presentation

Refurbishment and restart of JMTR, 6; Development of new irradiation facilities, 3; Post irradiation examination facilities

Ito, Masayasu; Kawamata, Kazuo; Iwamatsu, Shigemi; Hayashi, Koji; Kanazawa, Yoshiharu; Nakagawa, Tetsuya

no journal, , 

no abstracts in English

Oral presentation

Development of Hot-Laboratory facility under the project of advanced infrastructure

Taguchi, Taketoshi; Kato, Yoshiaki; Yonekawa, Minoru; Kanazawa, Yoshiharu; Ito, Masayasu; Kurosawa, Makoto; Aoyagi, Tatsuhiko; Tayama, Yoshinobu; Sozawa, Shizuo; Kawamata, Kazuo

no journal, , 

no abstracts in English

Oral presentation

Development of the capsule assembling device at JMTR Hot Laboratory

Tayama, Yoshinobu; Kanazawa, Yoshiharu; Souzawa, Shizuo; Kawamata, Kazuo; Shizuoka, Yoshihiro; Onizawa, Satoshi; Nakagawa, Tetsuya

no journal, , 

In the JMTR, the power ramping test is planned with high burn-up fuel as irradiation test. In the hot laboratory facilities, in accordance with the plan, as part of the development of facilities to deal with high burn-up fuel, replacing the assemble method using conventional shielding container, the system was developed that carries capsule to cell and performs assembling using capsule loading system put underwater of canal. Development has been completed in FY 2010.

13 (Records 1-13 displayed on this page)
  • 1