Refine your search:     
Report No.
 - 
Search Results: Records 1-6 displayed on this page of 6
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Magnetic properties of single crystalline Tb$$_5$$Sb$$_3$$

Kitaori, Aki*; Kanazawa, Naoya*; Kida, Takanori*; Narumi, Yasuo*; Hagiwara, Masayuki*; Kindo, Koichi*; Takeuchi, Tetsuya*; Nakamura, Ai*; Aoki, Dai*; Haga, Yoshinori; et al.

Journal of the Physical Society of Japan, 92(2), p.024702_1 - 024702_6, 2023/02

 Times Cited Count:0 Percentile:0(Physics, Multidisciplinary)

Journal Articles

Polymer photonic crystals prepared by triblock copolymerization-induced ${it in situ}$ microphase separation

Isozaki, Yuka*; Higashiharaguchi, Seiya*; Kaneko, Naoya*; Yamazaki, Shun*; Taniguchi, Tatsuo*; Karatsu, Takashi*; Ueda, Yuki; Motokawa, Ryuhei

Chemistry Letters, 51(6), p.625 - 628, 2022/06

 Times Cited Count:2 Percentile:27.64(Chemistry, Multidisciplinary)

Journal Articles

Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex, 2; Neutron scattering instruments

Nakajima, Kenji; Kawakita, Yukinobu; Ito, Shinichi*; Abe, Jun*; Aizawa, Kazuya; Aoki, Hiroyuki; Endo, Hitoshi*; Fujita, Masaki*; Funakoshi, Kenichi*; Gong, W.*; et al.

Quantum Beam Science (Internet), 1(3), p.9_1 - 9_59, 2017/12

The neutron instruments suite, installed at the spallation neutron source of the Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator Research Complex (J-PARC), is reviewed. MLF has 23 neutron beam ports and 21 instruments are in operation for user programs or are under commissioning. A unique and challenging instrumental suite in MLF has been realized via combination of a high-performance neutron source, optimized for neutron scattering, and unique instruments using cutting-edge technologies. All instruments are/will serve in world-leading investigations in a broad range of fields, from fundamental physics to industrial applications. In this review, overviews, characteristic features, and typical applications of the individual instruments are mentioned.

Journal Articles

Fluoride complexation of element 104, rutherfordium

Haba, Hiromitsu*; Tsukada, Kazuaki; Asai, Masato; Toyoshima, Atsushi; Akiyama, Kazuhiko; Nishinaka, Ichiro; Hirata, Masaru; Yaita, Tsuyoshi; Ichikawa, Shinichi; Nagame, Yuichiro; et al.

Journal of the American Chemical Society, 126(16), p.5219 - 5224, 2004/04

 Times Cited Count:44 Percentile:72.46(Chemistry, Multidisciplinary)

Fluoride complexation of element 104, rutherfordium (Rf), produced in the $$^{248}$$Cm($$^{18}$$O,5n)$$^{261}$$Rf reaction has been studied by anion-exchange chromatography on an atom-at-a-time scale. The anion-exchangechromatographic behavior of Rf was investigated in 1.9-13.9 M hydrofluoric acid together with those of the group-4 elements Zr and Hf produced in the $$^{18}$$O-induced reactions on Ge and Gd targets, respectively. It was found that the adsorption behavior of Rf on anion-exchange resin is quite different from those of Zr and Hf, suggesting the influence of relativistic effect on the fluoride complexation of Rf.

Oral presentation

Electrolytic reduction of Mo and W as lighter homologues of seaborgium

Toyoshima, Atsushi; Miyashita, Sunao*; Oe, Kazuhiro*; Kitayama, Yuta*; Lerum, H. V.*; Goto, Naoya*; Kaneya, Yusuke; Komori, Yukiko*; Mitsukai, Akina*; Vascon, A.; et al.

no journal, , 

no abstracts in English

Oral presentation

Developments towards aqueous phase chemistry of transactinide elements

Toyoshima, Atsushi; Oe, Kazuhiro*; Asai, Masato; Attallah, M. F.*; Goto, Naoya*; Gupta, N. S.*; Haba, Hiromitsu*; Kaneko, Masashi*; Kaneya, Yusuke; Kasamatsu, Yoshitaka*; et al.

no journal, , 

Due to short half-lives less than 10 s and extremely low production rates, transactinide elements heavier than seaborgium (Sg) are produced on an atom per hour scale. Therefore, a continuous rapid chemistry assembly is required to study aqueous-phase chemistry of these heaviest elements. In the present study, we started developments of a continuous chemistry assembly. Our first attempt was made in on-line experiments with Mo and W, lighter homologs of Sg, to optimize a chemistry assembly consisting of a newly developed membrane degasser as an interface between gas-jet and aqueous phase, a flow electrolytic column apparatus utilized to control oxidation states of Mo and W ions, and the continuous liquid-liquid extraction apparatus of SISAK for separation. In the conference, present status of the developments will be presented.

6 (Records 1-6 displayed on this page)
  • 1