Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Van Rooyen, I. J.*; Ivan, L.*; Messner, M.*; Edwards, L.*; Abonneau, E.*; Kamiji, Yu; Lowe, S.*; Nilsson, K.-F.*; Okajima, Satoshi; Pouchon, M.*; et al.
Proceedings of 4th International Conference on Generation IV and Small Reactors (G4SR-4), p.2 - 12, 2022/10
Yamano, Hidemasa; Vasile, A.*; Kang, S.-H.*; Summer, T.*; Tsige-Tamirat, H.*; Wang, J.*; Ashurko, I.*
Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 7 Pages, 2019/05
The Generation IV (GEN-IV) international forum is a framework for international co-operation in research and development for the next generation of nuclear energy systems. Within the GEN-IV sodium-cooled fast reactor (SFR) system arrangement, the SFR Safety and Operation (SO) project addresses the areas of safety technology and reactor operation technology developments. The aims of the SO project include (1) analyses and experiments that support establishing safety approaches and validating performance of specific safety features, (2) development and verification of computational tools and validation of models employed in safety assessment and facility licensing, and (3) acquisition of reactor operation technology, as determined largely from experience and testing in operating SFR plants. The tasks in the SO topics are categorized into the following three work packages (WP): WP-SO-1 "Methods, Models and Codes", WP-SO-2 "Experimental Programs and Operational Experience", and WP-SO-3 "Studies of Innovative Design and Safety Systems". This paper reports recent activities within the SO project.
Saptiama, I.*; Kaneti, Y. V.*; Suzuki, Yoshitaka; Tsuchiya, Kunihiko; Fukumitsu, Nobuyoshi*; Sakae, Takeji*; Kim, J.*; Kang, Y.-M.*; Ariga, Katsuhiko*; Yamauchi, Yusuke*
Small, 14(21), p.1800474_1 - 1800474_14, 2018/05
Times Cited Count:61 Percentile:89.68(Chemistry, Multidisciplinary)no abstracts in English
Vasile, A.*; Ren, L.*; Fanning, T.*; Tsige-Tamirat, H.*; Yamano, Hidemasa; Kang, S.-H.*; Ashurko, I.*
Proceedings of International Conference on Fast Reactors and Related Fuel Cycles; Next Generation Nuclear Systems for Sustainable Development (FR-17) (USB Flash Drive), 15 Pages, 2017/06
The tasks in the Safety and Operation (SO) topics are categorized into the following three work packages (WP): WP-SO-1 Methods, Models and codes is devoted to the development of tools for the evaluation of safety, WP-SO-2 Experimental Programs and Operational Experiences includes the operation, maintenance and testing experiences in experimental facilities and SFRs (e.g., Monju, Phenix, BN-600 and CEFR), and WP-SO-3 Studies of Innovative Design and Safety Systems relates to safety technologies for GEN-IV reactors such as active and passive safety systems and other specific design features. In this paper, recent activities in the SO project are described.
Nishiuchi, Mamiko; Choi, I. W.*; Daido, Hiroyuki; Nakamura, Tatsufumi*; Pirozhkov, A. S.; Yogo, Akifumi*; Ogura, Koichi; Sagisaka, Akito; Orimo, Satoshi; Daito, Izuru*; et al.
Plasma Physics and Controlled Fusion, 57(2), p.025001_1 - 025001_9, 2015/02
Times Cited Count:3 Percentile:12.82(Physics, Fluids & Plasmas)Projection images of a metal mesh produced by directional MeV electron beam together with directional proton beam, emitted simultaneously from a thin foil target irradiated by an ultrashort intense laser. The mesh patterns are projected to each detector by the electron beam and the proton beam originated from tiny virtual sources of 20 micron meter and
10 micron meter diameters, respectively. Based on the observed quality and magnification of the projection images, we estimate sizes and locations of the virtual sources for both beams and characterize their directionalities. To carry out physical interpretation of the directional electron beam qualitatively, we perform 2D particle-in-cell simulation which reproduces a directional escaping electron component, together with a non-directional dragged-back electron component, the latter mainly contributes to building a sheath electric field for proton acceleration.
Kang, T.-K.*; Kuk, I.-H.*; Katano, Yoshio; Igawa, Naoki; Ono, Hideo
Journal of Nuclear Materials, 209(3), p.321 - 325, 1994/05
no abstracts in English
Ogura, Koichi; Shizuma, Toshiyuki; Hayakawa, Takehito; Orimo, Satoshi; Sagisaka, Akito; Nishiuchi, Mamiko; Mori, Michiaki; Yogo, Akifumi; Pirozhkov, A. S.; Sugiyama, Hironori*; et al.
no journal, ,
Ultrashort and high intensity laser can induce high energy protons. Proton beams have a wide range of applications such as in the production of radioisotopes and proton therapy. An energy of the proton beam has a wide distribution. The distribution of activity in depth is calculated while laser induced protons are injected into an iron plate.
Ogura, Koichi; Shizuma, Toshiyuki; Hayakawa, Takehito; Orimo, Satoshi; Sagisaka, Akito; Nishiuchi, Mamiko; Mori, Michiaki; Yogo, Akifumi; Pirozhkov, A. S.; Sugiyama, Hironori*; et al.
no journal, ,
Protons with energies up to 3 MeV have been generated by the irradiation of a 7.5 m thickness target by a 1 Hz table top laser with intensity of 700mJ. These protons were used to induce the nuclear reaction 7Li(p,n)7Be. Simultaneously, energy of proton was detected by a time of flight method.