Refine your search:     
Report No.
 - 
Search Results: Records 1-1 displayed on this page of 1
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Gamma radiation resistance of spin Seebeck devices

Yagmur, A.*; Uchida, Kenichi*; Ihara, Kazuki*; Ioka, Ikuo; Kikkawa, Takashi*; Ono, Madoka*; Endo, Junichi*; Kashiwagi, Kimiaki*; Nakashima, Tetsuya*; Kirihara, Akihiro*; et al.

Applied Physics Letters, 109(24), p.243902_1 - 243902_4, 2016/12

 Times Cited Count:3 Percentile:15.07(Physics, Applied)

Thermoelectric devices based on the spin Seebeck effect (SSE) were irradiated with gamma ($$gamma$$) rays with the total dose of around 3$$times$$10$$^{5}$$ Gy in order to investigate the $$gamma$$-radiation resistance of the devices. To demonstrate this, Pt/Ni$$_{0.2}$$Zn$$_{0.3}$$Fe$$_{2.5}$$O$$_{4}$$/Glass and Pt/Bi$$_{0.1}$$Y$$_{2.9}$$Fe$$_{5}$$O$$_{12}$$/Gd$$_{3}$$Ga$$_{5}$$O$$_{12}$$ SSE devices were used. We confirmed that the thermoelectric, magnetic, and structural properties of the SSE devices are not affected by the $$gamma$$-ray irradiation. This result demonstrates that SSE devices are applicable to thermoelectric generation even in high radiation environments.

1 (Records 1-1 displayed on this page)
  • 1