Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Progress report of Japanese simulation research projects using the high-performance computer system Helios in the International Fusion Energy Research Centre

Ishizawa, Akihiro*; Idomura, Yasuhiro; Imadera, Kenji*; Kasuya, Naohiro*; Kanno, Ryutaro*; Satake, Shinsuke*; Tatsuno, Tomoya*; Nakata, Motoki*; Nunami, Masanori*; Maeyama, Shinya*; et al.

Purazuma, Kaku Yugo Gakkai-Shi, 92(3), p.157 - 210, 2016/03

The high-performance computer system Helios which is located at The Computational Simulation Centre (CSC) in The International Fusion Energy Research Centre (IFERC) started its operation in January 2012 under the Broader Approach (BA) agreement between Japan and the EU. The Helios system has been used for magnetised fusion related simulation studies in the EU and Japan and has kept high average usage rate. As a result, the Helios system has contributed to many research products in a wide range of research areas from core plasma physics to reactor material and reactor engineering. This project review gives a short catalogue of domestic simulation research projects. First, we outline the IFERC-CSC project. After that, shown are objectives of the research projects, numerical schemes used in simulation codes, obtained results and necessary computations in future.

Journal Articles

On the spatial structure of solitary radial electric field at the plasma edge in toroidal confinement devices

Ito, Kimitaka*; Ito, Sanae*; Kamiya, Kensaku; Kasuya, Naohiro*

Plasma Physics and Controlled Fusion, 57(7), p.075008_1 - 075008_7, 2015/07

 Times Cited Count:18 Percentile:75.86(Physics, Fluids & Plasmas)

The solitary radial electric field in the edge of toroidal plasma is studied based on the electric field bifurcation model. Results are applied to tokamak and helical plasmas, and the dependence of the electric field structure on the plasma parameters and geometrical factors is analyzed. The order of magnitude estimate for tokamak plasma is not far from experimental observations. It is shown that, in helical plasmas, the height of electric field structure is reduced substantially owing to the ripple particle transport, while the width is influenced less. The implications of the results for the limit of achievable gradient in the H-mode pedestal are also discussed.

Journal Articles

Dynamics of edge limit cycle oscillation in the JFT-2M tokamak

Kobayashi, Tatsuya*; Ito, Kimitaka*; Ido, Takeshi*; Kamiya, Kensaku; Ito, Sanae*; Miura, Yukitoshi; Nagashima, Yoshihiko*; Fujisawa, Akihide*; Inagaki, Shigeru*; Ida, Katsumi*; et al.

Nuclear Fusion, 54(7), p.073017_1 - 073017_14, 2014/07

 Times Cited Count:22 Percentile:79.14(Physics, Fluids & Plasmas)

In the JFT-2M tokamak, limit-cycle oscillation among several variables is observed before L-to-H transition. Spatiotemporal dynamics of the LCO is analyzed in detail. Zonal fows are not seen, and modulation in edge-localized poloidal flow and density gradient is observed. Modulation is also seen in Reynolds stress, caused by that in turbulence intensity and turbulence wavenumber. However, flow acceleration is not able to be explained by the modulation in the Reynolds stress. Rapid inward propagation in density gradient and turbulence packet is also observed. Characteristics of the propagation are veried by means of turbulence spreading theory and diffusion theory.

3 (Records 1-3 displayed on this page)
  • 1