Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kaburagi, Masaaki; Kamada, Kei*; Ishii, Junya*; Matsumoto, Tetsuro*; Manabe, Seiya*; Masuda, Akihiko*; Harano, Hideki*; Kato, Masahiro*; Shimazoe, Kenji*
Journal of Instrumentation (Internet), 19(11), p.P11019_1 - P11019_16, 2024/11
Ishii, Junya*; Shimizu, Morihito*; Kato, Masahiro*; Kurosawa, Tadahiro*; Tsuji, Tomoya; Yoshitomi, Hiroshi; Tanimura, Yoshihiko; Watabe, Hiroshi*
Journal of Radiological Protection, 44(3), p.031516_1 - 031516_8, 2024/09
Times Cited Count:0 Percentile:0.00(Environmental Sciences)Shibata, Taiju; Mizuta, Naoki; Sumita, Junya; Sakaba, Nariaki; Osaki, Takashi*; Kato, Hideki*; Izawa, Shoichi*; Muto, Takenori*; Gizatulin, S.*; Shaimerdenov, A.*; et al.
Proceedings of 9th International Topical Meeting on High Temperature Reactor Technology (HTR 2018) (USB Flash Drive), 7 Pages, 2018/10
Graphite materials are used for the in-core components of High Temperature Gas-cooled Reactor (HTGR). Oxidation damage on the graphite components in air ingress accident is a crucial issue for the safety point of view. SiC coating on graphite surface is a possible technique to enhance oxidation resistance. However, it is important to confirm the integrity of this material against high temperature and neutron irradiation for the application of the in-core components. JAEA and Japanese graphite companies carried out the R&D to develop the oxidation-resistant graphite. JAEA and INP investigated the irradiation effects on the oxidation-resistant graphite by using a framework of ISTC partner project. This paper describes the results of post irradiation experiment about the neutron irradiated SiC-coated oxidation-resistant graphite. A brand of oxidation-resistant graphite shows excellent performance against oxidation test after the irradiation.
Mizuta, Naoki; Sumita, Junya; Shibata, Taiju; Osaki, Takashi*; Kato, Hideki*; Izawa, Shoichi*; Muto, Takenori*; Gizatulin, S.*; Sakaba, Nariaki
Tanso Zairyo Kagaku No Shinten; Nihon Gakutsu Shinkokai Dai-117-Iinkai 70-Shunen Kinen-Shi, p.161 - 166, 2018/10
To enhance oxidation resistance of graphite material for in-core components of HTGR, JAEA and four Japanese graphite companies; Toyo Tanso, IBIDEN, Tokai Carbon and Nippon Techno-Carbon, are carrying out for development of oxidation-resistant graphite by CVD-SiC coating. This paper describes the outline of neutron irradiation test about the oxidation-resistant graphite by WWR-K reactor of INP, Kazakhstan through an ISTC partner project. Prior to the irradiation test, the oxidation-resistant graphite by CVD-SiC coating of all specimens showed enough oxidation resistance under un-irradiation condition. The neutron irradiation test was already completed and out-of-pile oxidation test will be carried out at the hot-laboratory of WWR-K.
Sato, Junya; Kikuchi, Hiroshi*; Kato, Jun; Sakakibara, Tetsuro; Matsushima, Ryotatsu; Sato, Fuminori; Kojima, Junji; Nakazawa, Osamu
QST-M-8; QST Takasaki Annual Report 2016, P. 62, 2018/03
no abstracts in English
Kawasaki, Masatsugu; Nakajima, Junya; Yoshida, Keisuke; Kato, Saori; Nishino, Sho; Nozaki, Teo; Nakagawa, Masahiro; Tsunoda, Junichi; Sugaya, Yuki; Hasegawa, Rie; et al.
JAEA-Data/Code 2017-004, 57 Pages, 2017/03
In emergency situation of nuclear facilities, we need to estimate the radiation dose due to radiation and radioactivity to grasp the influence range of the accident in the early stage. Therefore, we prepare the case studies of dose assessment for public exposure dose and personal exposure dose and contribute them to emergency procedures. This document covers about accidents of nuclear facilities in Nuclear Science Research Institute and past accident of nuclear power plant, and it can be used for inheritance of techniques of emergency dose assessment.
Sato, Junya; Suzuki, Shinji*; Kato, Jun; Sakakibara, Tetsuro; Meguro, Yoshihiro; Nakazawa, Osamu
QST-M-2; QST Takasaki Annual Report 2015, P. 87, 2017/03
no abstracts in English
Sato, Junya; Suzuki, Shinji*; Kato, Jun; Sakakibara, Tetsuro; Meguro, Yoshihiro; Nakazawa, Osamu
QST-M-2; QST Takasaki Annual Report 2015, P. 88, 2017/03
no abstracts in English
Shibata, Taiju; Sumita, Junya; Sakaba, Nariaki; Osaki, Takashi*; Kato, Hideki*; Izawa, Shoichi*; Muto, Takenori*; Gizatulin, S.*; Shaimerdenov, A.*; Dyussambayev, D.*; et al.
Proceedings of 8th International Topical Meeting on High Temperature Reactor Technology (HTR 2016) (CD-ROM), p.567 - 571, 2016/11
Graphite are used for the in-core components of HTGR, and it is desirable to enhance oxidation resistance to keep much safety margin. SiC coating is the candidate method for this purpose. JAEA and four Japanese graphite companies are studying to develop oxidation-resistant graphite. Neutron irradiation test was carried out by WWR-K reactor of INP of Kazakhstan through ISTC partner project. The total irradiation cycles of WWR-K operation was 10 cycles by 200 days. Irradiation temperature about 1473 K would be attained. The maximum fast neutron fluence (E 0.18 MeV) for the capsule irradiated at a central irradiation hole was preliminary calculated as 1.210/m, and for the capsule at a peripheral irradiation hole as 4.210/m. Dimension and weight of the irradiated specimens were measured, and outer surface of the specimens were observed by optical microscope. For the irradiated oxidation resistant graphite, out-of-pile oxidation test will be carried out at an experimental laboratory.
Meguro, Yoshihiro; Nakagawa, Akinori; Kato, Jun; Sato, Junya; Nakazawa, Osamu; Ashida, Takashi
Proceedings of International Conference on the Safety of Radioactive Waste Management (Internet), p.139_1 - 139_4, 2016/11
A variety of radioactive wastes have been generated in decommissioning of Fukushima Daiichi Nuclear Power Station. It is necessary to evaluate feasibility of conditioning methods to these wastes, because the majority of such wastes have not been solidified in Japan. The authors investigated an approach for screening of conditioning methods for the Fukushima wastes on the basis of the findings of the existing methods and results of fundamental solidification tests using synthetic Fukushima wastes. Here five solidification methods were selected, and also 13 wastes with different chemical composition are solidified, and characteristics of the solidified form are studied. A screening flow was proposed, and evaluation criteria on each step in the flow was set up. In this presentation a trial result was opened for a waste and improvements of the screening flow found in the trial evaluation was described.
Sumita, Junya; Shibata, Taiju; Sakaba, Nariaki; Osaki, Hiroki*; Kato, Hideki*; Fujitsuka, Kunihiro*; Muto, Takenori*; Gizatulin, S.*; Shaimerdenov, A.*; Dyussambayev, D.*; et al.
Proceedings of 7th International Topical Meeting on High Temperature Reactor Technology (HTR 2014) (USB Flash Drive), 7 Pages, 2014/10
Graphite materials are used for the in-core components of High Temperature Gas-cooled Reactor(HTGR)which is a graphite-moderated and helium gas-cooled reactor. In the case of air ingress accident in HTGR, SiO protective layer is formed on the surface of SiC layer in TRISO CFP and oxidation of SiC does not proceed and fission products are retained inside the fuel particle. A new safety concept for the HTGR, called Naturally Safe HTGR, has been recently proposed. To enhance the safety of Naturally Safe HTGR ultimately, it is expected that oxidation-resistant graphite is used for graphite components to prevent the TRISO CFPs and fuel compacts from failure. SiC coating is one of candidate methods for oxidation-resistant graphite. JAEA and four graphite companies launched R&Ds to develop the oxidation-resistant graphite and the International Science and Technology Center(ISTC) partner project with JAEA and INP was launched to investigate the irradiation effects on the oxidation-resistant graphite. To determine grades of the oxidation-resistant graphite which will be adopted as irradiation test, a preliminary oxidation test was carried out. This paper described the results of the preliminary oxidation test, the plan of out-of-pile test, irradiation test and post-irradiation test(PIE)of the oxidation-resistant graphite.
Nakayama, Takuya; Suzuki, Shinji; Hanada, Keiji; Tomioka, Osamu; Sato, Junya; Irisawa, Keita; Kato, Jun; Kawato, Yoshimi; Meguro, Yoshihiro
Proceedings of 2nd International Symposium on Cement-based Materials for Nuclear Wastes (NUWCEM 2014) (CD-ROM), 12 Pages, 2014/06
Takizawa, Kentaro*; Kakehashi, Kazuyuki*; Fukuda, Toshiaki*; Kida, Toru*; Sawa, Kazuhiro; Sumita, Junya; Kato, Yutai*; Snead, L. L.*
Ceramic Materials for Energy Applications; Ceramic Engineering and Science Proceedings, Vol.32, No.9, p.13 - 19, 2011/11
Fine-grained isotropic graphite shows high strength making it a promising material for the graphite component of High Temperature Gas-cooled Reactor (HTGR) and Very High Temperature Reactor (VHTR). Service life of the graphite component is determined primarily by the residual strength after neutron irradiation in the reactor core. It is expected that development of a new nuclear grade graphite possessing higher strength will contribute toward added design margins and an extension of the service life of components, which likely improve the reactor economy very significantly. Tokai Carbon Co. LTD. has started the development of nuclear grade graphite for the graphite component of VHTR. G347S and G458S grades are fine-grained isotropic graphites having high tensile strength greater than 30 MPa. It is planned to carry out the neutron irradiation tests using High Flux Isotope Reactor at Oak Ridge National Laboratory up to the neutron fluence of 30 dpa and the irradiation temperatures of 300-900C. The dimensional changes, elastic modulus, coefficient of thermal expansion, etc., will be studied. It is also planned to evaluate the non-irradiated mechanical/thermal properties and the irradiation effects in collaboration with Japan Atomic Energy Agency. This paper introduces our technical R&D plan for G347S and G458S. The initial results of the properties and the irradiation test plan are also shown.
Okada, Takashi; Uematsu, Shinichi; Tobita, Noriyuki; Kato, Junya
9th International Conference on Environmental Remediation and Radioactive Waste Management (ICEM '03), 0 Pages, 2003/00
None
Sawa, Kazuhiro; Sumita, Junya; Ueta, Shohei; Takahashi, Masashi; Tobita, Tsutomu*; Hayashi, Kimio; Saito, Takashi; Suzuki, Shuichi*; Yoshimuta, Shigeharu*; Kato, Shigeru*
JAERI-Research 2002-012, 39 Pages, 2002/06
no abstracts in English
Shibata, Taiju; Sumita, Junya; Nagata, Hiroshi; Saito, Takashi; Tsuchiya, Kunihiko; Sakaba, Nariaki; Osaki, Hiroki*; Kato, Hideki*; Fujitsuka, Kunihiro*; Muto, Takenori*; et al.
no journal, ,
no abstracts in English
Kato, Junya; Nakazaki, Katsutoshi; Takaya, Akikazu; Matsumura, Tadayuki; Niitsuma, Koichi; Kodaka, Akira; Fujiwara, Koji
no journal, ,
no abstracts in English
Sato, Junya; Suzuki, Shinji; Nakagawa, Akinori; Kato, Jun; Sakakibara, Tetsuro; Nakazawa, Osamu; Yamashita, Masaaki; Sato, Fuminori; Sukegawa, Hirobumi; Meguro, Yoshihiro
no journal, ,
no abstracts in English
Kunimoto, Eiji; Konishi, Takashi; Eto, Motokuni*; Sumita, Junya; Shibata, Taiju; Sawa, Kazuhiro; Kuroda, Masatoshi*; Kato, Yutai*
no journal, ,
no abstracts in English
Onozaki, Kimihiro*; Sato, Junya; Suzuki, Shinji*; Kato, Jun; Sakakibara, Tetsuro; Nakazawa, Osamu; Meguro, Yoshihiro; Mikami, Hisashi*; Platzka, M.*; Blazsekova, M.*
no journal, ,
no abstracts in English