Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kawasaki, Takuro; Fukuda, Tatsuo; Yamanaka, Satoru*; Murayama, Ichiro*; Kato, Takanori*; Baba, Masaaki*; Hashimoto, Hideki*; Harjo, S.; Aizawa, Kazuya; Tanaka, Hirohisa*; et al.
Journal of Applied Physics, 137(9), p.094101_1 - 094101_7, 2025/03
Times Cited Count:0 Percentile:0.00(Physics, Applied)Yokoyama, Keisuke; Watanabe, Masashi; Usui, Akane; Seki, Takayuki*; Onishi, Takashi; Kato, Masato
Nuclear Materials and Energy (Internet), 42, p.101908_1 - 101908_6, 2025/03
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Oxygen potential of high Am content MOX, (UPu
Am
)O
, was measured at 1273 K, 1473 K, 1573 K, and 1623 K. by gas equilibrium method using thermogravimeter. Comparing the measured data with the literature data, it was found that the addition of 15% Am increases the oxygen potential of (U, Pu)O
by 100-150 kJ/mol for the same Pu content and O/M ratio. The proportion of cations in the stoichiometric composition was determined as (U
U
Pu
Am
)O
, assuming the presence of Am
and partial oxidation of U
to U
. The relationship between oxygen partial pressure and deviation x from stoichiometry in (U
Pu
Am
)O
was analyzed by defect chemistry model. The equation to represent the O/M ratio was derived as a function of temperature and oxygen partial pressure. A part of this study includes the results of MEXT Innovative Nuclear Research and Development Program Grant Number JPMXD0219214921.
Yamamoto, Keisuke; Nakagawa, Takuya; Shimojo, Hiroto; Kijima, Jun; Miura, Daiya; Onose, Yoshihiko*; Namba, Koji*; Uchida, Hiroaki*; Sakamoto, Kazuhiko*; Ono, Chika*; et al.
JAEA-Technology 2024-019, 211 Pages, 2025/02
The uranium enrichment facilities at the Nuclear Fuel Cycle Engineering Laboratories of Japan Atomic Energy Agency (JAEA) were constructed sequentially to develop uranium enrichment technology with centrifugal separation method. The developed technologies were transferred to Japan Nuclear Fuel Limited until 2001. And the original purpose has been achieved. Wastewater Treatment Facility, one of the uranium enrichment facilities, was constructed in 1976 to treat radioactive liquid waste generated at the facilities, and it finished the role in 2008. In accordance with the Medium/Long-Term Management Plan of JAEA Facilities, interior equipment installed in this facility had been dismantled and removed since November 2021 to August 2023. This report summarizes the findings obtained through the work related to the contamination inspection methods cancellation the controlled area of Wastewater Treatment Facility from September 2023 to March 2024.
Watanabe, Masashi; Yokoyama, Keisuke; Vauchy, R.; Kato, Masato; Sugata, Hiromasa*; Seki, Takayuki*; Hino, Tetsushi*
Journal of Nuclear Materials, 599, p.155232_1 - 155232_5, 2024/10
Times Cited Count:2 Percentile:82.82(Materials Science, Multidisciplinary)Oxygen potential data of UAm
O
were measured at 1473, 1573, and 1673 K by thermogravimetry. In U
An
O
, where An stands for Pu or Am, and for a given value of y and Oxygen/Metal ratio, the oxygen potential of U
Am
O
is higher than that of U
Pu
O
. The valence of cations in the hypostoichiometric region is similar to that of Nd-doped UO
. At the stoichiometric composition, it is estimated to be Am
, U
, and U
(for charge compensation of Am
). The experimental data were analyzed using a defect chemistry model, and a relationship connecting the oxygen-to-metal ratio, the temperature, and the equilibrium oxygen partial pressure was proposed.
Hirooka, Shun; Morimoto, Kyoichi; Matsumoto, Taku; Ogasawara, Masahiro*; Kato, Masato; Murakami, Tatsutoshi
Journal of Nuclear Materials, 598, p.155188_1 - 155188_9, 2024/09
Times Cited Count:0 Percentile:0.00(Materials Science, Multidisciplinary)no abstracts in English
Kubota, Masato; Kato, Seiichi*
Journal of Applied Physics, 136(2), p.025102_1 - 025102_5, 2024/07
Times Cited Count:1 Percentile:46.22(Physics, Applied)Frazer, D.*; Saleh, T. A.*; Matsumoto, Taku; Hirooka, Shun; Kato, Masato; McClellan, K.*; White, J. T.*
Nuclear Engineering and Design, 423, p.113136_1 - 113136_7, 2024/07
Times Cited Count:0 Percentile:0.00(Nuclear Science & Technology)Nanoindentation based techniques can be employed on minute volumes of material to measure mechanical properties, including Young's modulus, hardness, and creep stress exponents. In this study, (U,Ce)O solid solutions samples are used to develop elevated temperature nanoindentation and nanoindentation creep testing methods for use on mixed oxide fuels. Nanoindentation testing was performed on 3 separate (Ux-1,Cex)O
compounds ranging from x equals 0.1 to 0.3 at up to 800
C: their Young's modulus, hardness, and creep stress exponents were evaluated. The Young's modulus decreases in the expected linear manner while the hardness decreases in the expected exponential manner. The nanoindentation creep experiments at 800
C give stress exponent values, n=4.7-6.9, that suggests dislocation motion as the deformation mechanism.
Kato, Masato; Oki, Takumi; Watanabe, Masashi; Hirooka, Shun; Vauchy, R.; Ozawa, Takayuki; Uwaba, Tomoyuki; Ikusawa, Yoshihisa; Nakamura, Hiroki; Machida, Masahiko
Journal of the American Ceramic Society, 107(5), p.2998 - 3011, 2024/05
Times Cited Count:3 Percentile:23.89(Materials Science, Ceramics)Tsuchiya, Harufumi; Hibino, Kinya*; Kawata, Kazumasa*; Onishi, Munehiro*; Takita, Masato*; Munakata, Kazuoki*; Kato, Chihiro*; Shimoda, Susumu*; Shi, Q.*; Wang, S.*; et al.
Progress of Earth and Planetary Science (Internet), 11, p.26_1 - 26_14, 2024/05
Times Cited Count:0 Percentile:0.00(Geosciences, Multidisciplinary)Yamamoto, Tomohiko; Kato, Atsushi; Hayakawa, Masato; Shimoyama, Kazuhito; Ara, Kuniaki; Hatakeyama, Nozomu*; Yamauchi, Kanau*; Eda, Yuhei*; Yui, Masahiro*
Nuclear Engineering and Technology, 56(3), p.893 - 899, 2024/03
Times Cited Count:1 Percentile:0.00(Nuclear Science & Technology)Vauchy, R.; Matsumoto, Taku; Hirooka, Shun; Uno, Hiroki*; Tamura, Tetsuya*; Arima, Tatsumi*; Inagaki, Yaohiro*; Idemitsu, Kazuya*; Nakamura, Hiroki; Machida, Masahiko; et al.
Journal of Nuclear Materials, 588, p.154786_1 - 154786_13, 2024/01
Times Cited Count:6 Percentile:87.16(Materials Science, Multidisciplinary)Horii, Yuta; Hirooka, Shun; Uno, Hiroki*; Ogasawara, Masahiro*; Tamura, Tetsuya*; Yamada, Tadahisa*; Furusawa, Naoya*; Murakami, Tatsutoshi; Kato, Masato
Journal of Nuclear Materials, 588, p.154799_1 - 154799_20, 2024/01
Times Cited Count:6 Percentile:82.11(Materials Science, Multidisciplinary)The thermal conductivities of near-stoichiometric (U,Pu,Am)O doped with Nd
O
/Sm
O
, which is major fission product (FP) generated by a uranium-plutonium mixed oxides (MOX) fuel irradiation, as simulated fission products are evaluated at 1073-1673 K. The thermal conductivities are calculated from the thermal diffusivities that are measured using the laser flash method. To evaluate the thermal conductivity from a homogeneity viewpoint of Nd/Sm cations in MOX, the specimens with different homogeneity of Nd/Sm are prepared using two kinds of powder made by ball-mill and fusion methods. A homogeneous Nd/Sm distribution decreases the thermal conductivity of MOX with increasing Nd/Sm content, whereas heterogeneous Nd/Sm has no influence. The effect of Nd/Sm on the thermal conductivity is studied using the classical phonon transport model (A+BT)
. The dependences of the coefficients A and B on the Nd/Sm content (C
and C
, respectively) are evaluated as: A(mK/W)=1.70
10
+ 0.93C
+ 1.20C
, B(m/W)=2.39
10
.
Takasaki, Koji; Yasumune, Takashi; Yamaguchi, Yukako; Hashimoto, Makoto; Maeda, Koji; Kato, Masato
Journal of Nuclear Science and Technology, 60(11), p.1437 - 1446, 2023/11
Times Cited Count:1 Percentile:0.00(Nuclear Science & Technology)The aerodynamic radioactive median diameter (AMAD) is necessary information to assess the internal exposure. On June 6, 2017, at a plutonium handling facility in Oarai site of Japan Atomic Energy Agency (JAEA), during the inspection work of a storage container that contains nuclear fuel materials, accidental contamination occurred and five workers inhaled radioactive materials including plutonium. Some smear papers and an air sampling filter were measured with the imaging plate, and we conservatively estimated minimum AMADs for two cases, plutonium nitrate and plutonium dioxide. As a result of AMAD estimation, even excluding a giant particle of a smear sample, the minimum AMADs of plutonium nitrate from smear papers were 4.3 - 11.3 m and those of plutonium dioxide were 5.6 - 14.1
m. Also, the minimum AMAD of plutonium nitrate from an air sampling filter was 3.0
m and that of plutonium dioxide was 3.9
m.
Hirooka, Shun; Horii, Yuta; Sunaoshi, Takeo*; Uno, Hiroki*; Yamada, Tadahisa*; Vauchy, R.; Hayashizaki, Kohei; Nakamichi, Shinya; Murakami, Tatsutoshi; Kato, Masato
Journal of Nuclear Science and Technology, 60(11), p.1313 - 1323, 2023/11
Times Cited Count:5 Percentile:82.11(Nuclear Science & Technology)Additive MOX pellets are fabricated by a conventional dry powder metallurgy method. NdO
and Sm
O
are chosen as the additive materials to simulate the corresponding soluble fission products dispersed in MOX. Shrinkage curves of the MOX pellets are obtained by dilatometry, which reveal that the sintering temperature is shifted toward a value higher than that of the respective regular MOX. The additives, however, promote grain growth and densification, which can be explained by the effect of oxidized uranium cations covering to a pentavalent state. Ceramography reveals large agglomerates after sintering, and Electron Probe Micro-Analysis confirms that inhomogeneous elemental distribution, whereas XRD reveals a single face-centered cubic phase. Finally, by grinding and re-sintering the specimens, the cation distribution homogeneity is significantly improved, which can simulate spent nuclear fuels with soluble fission products.
Vauchy, R.; Sunaoshi, Takeo*; Hirooka, Shun; Nakamichi, Shinya; Murakami, Tatsutoshi; Kato, Masato
Journal of Nuclear Materials, 580, p.154416_1 - 154416_11, 2023/07
Times Cited Count:9 Percentile:94.84(Materials Science, Multidisciplinary)Kato, Masato; Nakamichi, Shinya; Hirooka, Shun; Watanabe, Masashi; Murakami, Tatsutoshi; Ishii, Katsunori
Nihon Genshiryoku Gakkai Wabun Rombunshi (Internet), 22(2), p.51 - 58, 2023/04
Uranium and Plutonium mixed oxide (MOX) pellets used as fast reactor fuels have been produced from several raw materials by mechanical blending method through processes of ball milling, additive blending, granulation, pressing, sintering and so on. It is essential to control the pellet density which is one of the important fuel specifications, but it is difficult to understand relationships among many parameters in the production. Database for MOX production was prepared from production results in Japan, and input data of eighteen types were chosen from production process and made a data set. Machine learning model to predict sintered density of MOX pellet was derived by gradient boosting regressor, and represented the measured sintered density with coefficient of determination of R=0.996
Yamamoto, Tomohiko; Kato, Atsushi; Hayakawa, Masato; Shimoyama, Kazuhito; Ara, Kuniaki; Hatakeyama, Nozomu*; Yamauchi, Kanau*; Eda, Yuhei*; Yui, Masahiro*
Proceedings of 2023 International Congress on Advanced in Nuclear Power Plants (ICAPP 2023) (Internet), 6 Pages, 2023/04
Vauchy, R.; Hirooka, Shun; Watanabe, Masashi; Kato, Masato
Scientific Reports (Internet), 13, p.2217_1 - 2217_8, 2023/02
Times Cited Count:10 Percentile:76.28(Multidisciplinary Sciences)Watanabe, Masashi; Kato, Masato
Frontiers in Nuclear Engineering (Internet), 1, p.1082324_1 - 1082324_9, 2023/01
Since the oxygen potential and the oxygen coefficient of UO have a significant impact on fuel performance, many experimental data have been obtained. However, experimental data of the oxygen potential and the oxygen diffusion coefficient in the high temperature region above 1673 K are very limited. In the present study, we aimed to obtain these data and analyze them by defect chemistry. The oxygen potentials and the oxygen chemical diffusion coefficient of UO
were measured by the gas equilibrium method in the near stoichiometric region at temperatures ranging from 1673 to 1873 K. A data set of oxygen potentials was made together with literature data and analyzed by defect chemistry. The oxygen potential of UO
was determined as a function of O/U ratio and temperature, and an equation representing the relationship was derived. The oxygen chemical diffusion coefficient values obtained in this study were reasonably close to the literature values. The oxygen partial pressure dependence of the oxygen chemical diffusion coefficients was predicted from the evaluated results of the oxygen potential data, but no clear dependence was observed.
Kato, Masato; Watanabe, Masashi; Hirooka, Shun; Vauchy, R.
Frontiers in Nuclear Engineering (Internet), 1, p.1081473_1 - 1081473_10, 2023/01