Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 31

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Review of articles related to the accident of TEPCO's Fukushima Daiichi Nuclear Power Station published on Japanese Journal of Health Physics; Opinion and others

Takahara, Shogo; Iimoto, Takeshi*; Igarashi, Takayuki*; Kawabata, Masako*

Hoken Butsuri (Internet), 58(2), p.50 - 58, 2023/08

The Health Physics Society of Japan established a working group to obtain the insights and findings from the articles, which are related to the Fukushima Daiichi Nuclear Power Station (1F) accident, published in the Japanese Journal of Health Physics. This paper describes the results of the review on 47 articles, which are classified into the field without risk communication, environmental measurement and monitoring, radiation dose measurement and assessment, radiation medicine and radioactive waste. In the reviewed articles, there are various insights and issues depending on the standpoint of the authors and social interests in the timing those published. It is important to face these insights and issues to consider prudently "what is health physics or radiation protection?" for the future development of the Health Physics society.

Journal Articles

Estimated isotopic compositions of Yb in enriched $$^{176}$$Yb for producing $$^{177}$$Lu with high radionuclide purity by $$^{176}$$Yb($$d,x$$)$$^{177}$$Lu

Nagai, Yasuki*; Kawabata, Masako*; Hashimoto, Shintaro; Tsukada, Kazuaki; Hashimoto, Kazuyuki*; Motoishi, Shoji*; Saeki, Hideya*; Motomura, Arata*; Minato, Futoshi; Ito, Masatoshi*

Journal of the Physical Society of Japan, 91(4), p.044201_1 - 044201_10, 2022/04

 Times Cited Count:3 Percentile:46.06(Physics, Multidisciplinary)

Recently, $$^{177}$$Lu is considered as one of the most important medical RIs for treating neuroendocrine tumors. A plan to produce $$^{177}$$Lu with high purity by using enriched $$^{176}$$Yb samples with irradiation of deuteron beams in accelerators has been discussed. However, since the other Yb isotopes contained in the Yb sample interacts with deuterons, Lu isotopes other than $$^{177}$$Lu are produced as impurities. Since the purity of $$^{177}$$Lu is important for medical use, a method to evaluate the impurity of Lu has been required. In this study, we proposed a new method to estimate production yields of each Lu isotopes in Yb samples with arbitrary isotopic compositions by using excitation functions of Yb($$d,x$$)Lu reactions and the particle transport calculation code PHITS. The method plays an important role in discussing the isotopic composition of enriched samples to produce high-purity $$^{177}$$Lu using accelerators.

Journal Articles

Large scale production of $$^{64}$$Cu and $$^{67}$$Cu via the $$^{64}$$Zn(n, p)$$^{64}$$Cu and $$^{68}$$Zn(n, np/d)$$^{67}$$Cu reactions using accelerator neutrons

Kawabata, Masako*; Motoishi, Shoji*; Ota, Akio*; Motomura, Arata*; Saeki, Hideya*; Tsukada, Kazuaki; Hashimoto, Shintaro; Iwamoto, Nobuyuki; Nagai, Yasuki*; Hashimoto, Kazuyuki*

Journal of Radioanalytical and Nuclear Chemistry, 330(3), p.913 - 922, 2021/12

 Times Cited Count:7 Percentile:69.06(Chemistry, Analytical)

Both $$^{64}$$Cu and $$^{67}$$Cu are promising radionuclides in nuclear medicine. Production yields of these radionuclides were quantified by irradiating 55.4 g of natural zinc with accelerator neutrons. Clinically suitable $$^{64}$$Cu and $$^{67}$$Cu yields were estimated by experimental based numerical simulations using 100 g of enriched $$^{64}$$Zn and $$^{68}$$Zn, respectively, and elevated neutron fluxes from 40 MeV, 2 mA deuterons. A combined thermal- and resin-separation method was developed to isolate $$^{64}$$Cu and $$^{67}$$Cu from zinc, resulting in 73% separation efficiency and 97% zinc recovery. Such methods can provide large scale production of $$^{64}$$Cu and $$^{67}$$Cu for clinical applications.

Journal Articles

Anomalous radioisotope production for $$^{68}$$ZnO using polyethylene by accelerator neutrons

Tsukada, Kazuaki; Nagai, Yasuki*; Hashimoto, Shintaro; Minato, Futoshi; Kawabata, Masako*; Hatsukawa, Yuichi*; Hashimoto, Kazuyuki*; Watanabe, Satoshi*; Saeki, Hideya*; Motoishi, Shoji*

Journal of the Physical Society of Japan, 89(3), p.034201_1 - 034201_7, 2020/03

 Times Cited Count:2 Percentile:19.65(Physics, Multidisciplinary)

We found anomalously large yields of $$^{67}$$Ga, $$^{66}$$Ga, $$^{rm 69m}$$Zn and $$^{64}$$Cu by neutron irradiation on a $$^{68}$$ZnO sample in a polyethylene shield. Neutron beams are generated from the $$^{9}$$Be($$d,n$$) reaction for 50 MeV deuterons. The yields obtained were more than 20 times larger than those in the unshielded sample. On the other hand, the yields of $$^{67}$$Ga, $$^{66}$$Ga, $$^{rm 69m}$$Zn and $$^{64}$$Cu from a metallic $$^{68}$$Zn sample and the yields of $$^{67}$$Cu, $$^{65}$$Ni and $$^{65}$$Zn from the $$^{68}$$ZnO and $$^{68}$$Zn samples were almost insensitive to the shield conditions. This finding would provide us a unique capability of accelerator neutrons to simultaneously produce a large amount of several radioisotopes, including proton induced reaction products, by using a single sample. The experimental data were compared with the yields estimated by using the Particle and Heavy Ion Transport code System and the result was discussed.

Journal Articles

$$^{99}$$Mo yield using large sample mass of MoO$$_{3}$$ for sustainable production of $$^{99}$$Mo

Tsukada, Kazuaki; Nagai, Yasuki*; Hashimoto, Kazuyuki*; Kawabata, Masako*; Minato, Futoshi; Saeki, Hideya*; Motoishi, Shoji*; Ito, Masatoshi*

Journal of the Physical Society of Japan, 87(4), p.043201_1 - 043201_5, 2018/04

 Times Cited Count:10 Percentile:58.05(Physics, Multidisciplinary)

Journal Articles

Measurement and estimation of the $$^{99}$$Mo production yield by $$^{100}$$Mo($$n,2n$$)$$^{99}$$Mo

Minato, Futoshi; Tsukada, Kazuaki; Sato, Nozomi*; Watanabe, Satoshi*; Saeki, Hideya*; Kawabata, Masako*; Hashimoto, Shintaro; Nagai, Yasuki*

Journal of the Physical Society of Japan, 86(11), p.114803_1 - 114803_6, 2017/11

 Times Cited Count:10 Percentile:57.89(Physics, Multidisciplinary)

We have measured the yield of $$^{99}$$Mo, the mother nuclide of $$^{99m}$$Tc used in nuclear diagnostic procedure. $$^{99}$$Mo was produced by $$^{100}$$Mo($$n$$,$$2n$$)$$^{99}$$Mo using neutrons with thermal energy up to about 40 MeV, provided by C($$d$$,$$n$$). The $$^{99}$$Mo yield agrees with an estimated yield with the use of the latest data of C($$d$$,$$n$$) and the evaluated cross section given in the JENDL. Based on this, a new calculation was carried out to produce $$^{99}$$Mo to seek for a good economical condition. Various conditions such as the $$^{100}$$MoO$$_{3}$$ sample mass, the distance between the carbon target and the sample, the radius of the deuteron beam, and the neutron irradiation time were considered. The calculated $$^{99}$$Mo yield indicates that about 30% of the $$^{99}$$Mo demand in Japan can be fulfilled with a single accelerator. The elusion of $$^{99m}$$Tc from the $$^{99}$$Mo twice per day would meet about 50% of the $$^{99}$$Mo demand.

Journal Articles

Application of $$^{67}$$Cu produced by $$^{68}$$Zn($$n,n'p+d$$)$$^{67}$$Cu to biodistribution study in tumor-bearing mice

Sugo, Yumi*; Hashimoto, Kazuyuki*; Kawabata, Masako*; Saeki, Hideya*; Sato, Shunichi*; Tsukada, Kazuaki; Nagai, Yasuki*

Journal of the Physical Society of Japan, 86(2), p.023201_1 - 023201_3, 2017/02

 Times Cited Count:14 Percentile:66.38(Physics, Multidisciplinary)

$$^{67}$$Cu produced by the $$^{68}$$Zn($$n,n'p+d$$)$$^{67}$$Cu reaction was used for the first time to determine the biodistribution of $$^{67}$$CuCl$$_{2}$$ in colorectal tumor-bearing mice. High uptake of $$^{67}$$Cu was observed in the tumor as well as in the liver and kidney which are the major organs for copper metabolism. The result showing $$^{67}$$Cu accumulation in the tumor suggests that $$^{67}$$CuCl$$_{2}$$ can be a potential radionuclide agent for cancer radiotherapy. It would also encourage further studies on the therapeutic effect in small animals using an increased dose of $$^{67}$$Cu produced by the $$^{68}$$Zn($$n,n'p+d$$)$$^{67}$$Cu reaction using intense neutrons available at present.

Journal Articles

SPECT imaging of mice with $$^{99m}$$Tc-radiopharmaceuticals obtained from $$^{99}$$Mo produced by $$^{100}$$Mo(n,2n)$$^{99}$$Mo and fission of $$^{235}$$U

Hashimoto, Kazuyuki; Nagai, Yasuki; Kawabata, Masako; Sato, Nozomi*; Hatsukawa, Yuichi; Saeki, Hideya; Motoishi, Shoji*; Ota, Masayuki; Konno, Chikara; Ochiai, Kentaro; et al.

Journal of the Physical Society of Japan, 84(4), p.043202_1 - 043202_4, 2015/04

 Times Cited Count:8 Percentile:51.89(Physics, Multidisciplinary)

Journal Articles

New phenomenon observed in thermal release of $$^{99m}$$Tc from molten $$^{100}$$MoO$$_{3}$$

Kawabata, Masako; Nagai, Yasuki; Hashimoto, Kazuyuki; Saeki, Hideya; Motoishi, Shoji*; Sato, Nozomi*; Ota, Akio*; Shiina, Takayuki*; Kawauchi, Yukimasa*

Journal of the Physical Society of Japan, 84(2), p.023201_1 - 023201_4, 2015/02

 Times Cited Count:6 Percentile:44.19(Physics, Multidisciplinary)

$$^{99m}$$Tc for medical use can be separated by thermochromatography from a molten $$^{99}$$MoO$$_{3}$$ sample. Effect of moist oxygen gas on the $$^{99m}$$Tc release from molten $$^{99}$$MoO$$_{3}$$ samples was investigated using a $$^{99}$$Mo/$$^{99m}$$Tc generator. $$^{99}$$Mo was produced with $$^{100}$$Mo(n,2n)$$^{99}$$Mo. A new phenomenon has been observed: release rate, separation- and recovery-efficiencies of $$^{99m}$$Tc were higher in the moist oxygen gas than those in the dry oxygen gas. The present result is a significant progress towards the stable production of a high quality $$^{99m}$$Tc from a molten MoO$$_{3}$$ sample with high separation efficiency. The result would also give us a new insight into the interaction between the moist oxygen gas and the molten MoO$$_{3}$$.

Journal Articles

First measurement of the radionuclide purity of the therapeutic isotope $$^{67}$$Cu produced by $$^{68}$$Z($$n$$,$$x$$) reaction using $$^{rm nat}$$C($$d$$,$$n$$) neutrons

Sato, Nozomi; Tsukada, Kazuaki; Watanabe, Satoshi; Ishioka, Noriko; Kawabata, Masako; Saeki, Hideya; Nagai, Yasuki; Kin, Tadahiro*; Minato, Futoshi; Iwamoto, Nobuyuki; et al.

Journal of the Physical Society of Japan, 83(7), p.073201_1 - 073201_4, 2014/07

 Times Cited Count:13 Percentile:63.21(Physics, Multidisciplinary)

We have for the first time demonstrated that the therapeutic nuclide of $$^{67}$$Cu produced by $$^{68}$$Zn($$n$$,$$x$$)$$^{67}$$Cu has highest radionuclide purity compared to previous ones. We measured a $$gamma$$-ray spectrum of the reaction product produced by bombarding an enriched $$^{68}$$Zn sample with neutrons with a HPGe detector. The neutrons were obtained by $$^{rm nat}$$C($$d$$,$$n$$) using 41 MeV deuterons provided from Takasaki Ion Accelerators for Advanced Radiation Application of Japan Atomic Energy Agency. Relative production yields of impurity radionuclides such as $$^{65}$$Zn to $$^{67}$$Cu are extremely low, which allow us to chemically separate $$^{67}$$Cu from an irradiated $$^{68}$$Zn sample with a few steps and to reuse high cost an enriched $$^{68}$$Zn sample. The present result strongly suggest that the $$^{68}$$Zn($$n$$,$$x$$)$$^{67}$$Cu reaction is the most promising route to produce high quality $$^{67}$$Cu and could solve a longstanding problem of establishing an appropriate production method of $$^{67}$$Cu.

Journal Articles

High thermo-separation efficiency of $$^{99m}$$Tc from molten $$^{100}$$MoO$$_{3}$$ samples by repeated milking tests

Nagai, Yasuki; Kawabata, Masako; Sato, Nozomi; Hashimoto, Kazuyuki; Saeki, Hideya; Motoishi, Shoji*

Journal of the Physical Society of Japan, 83(8), p.083201_1 - 083201_4, 2014/07

 Times Cited Count:11 Percentile:56.89(Physics, Multidisciplinary)

Journal Articles

Generation of radioisotopes with accelerator neutrons by deuterons

Nagai, Yasuki; Hashimoto, Kazuyuki; Hatsukawa, Yuichi; Saeki, Hideya; Motoishi, Shoji; Sonoda, Nozomi; Kawabata, Masako; Harada, Hideo; Kin, Tadahiro*; Tsukada, Kazuaki; et al.

Journal of the Physical Society of Japan, 82(6), p.064201_1 - 064201_7, 2013/06

 Times Cited Count:45 Percentile:85.48(Physics, Multidisciplinary)

Oral presentation

Medical radioisotope production with accelerator neutrons by 50 MeV deuterons

Tsukada, Kazuaki; Hashimoto, Kazuyuki*; Hatsukawa, Yuichi*; Kawabata, Masako*; Saeki, Hideya*; Minato, Futoshi; Iwamoto, Nobuyuki; Nagai, Yasuki*; Sugo, Yumi*; Watanabe, Satoshi*; et al.

no journal, , 

no abstracts in English

Oral presentation

Evaluation for specific radioactivity of $$^{67}$$Cu for cancer therapy, produced with accelerator neutrons by deuterons

Hashimoto, Kazuyuki*; Kawabata, Masako*; Saeki, Hideya*; Sato, Shunichi*; Tsukada, Kazuaki; Sugo, Yumi*; Nagai, Yasuki*; Hatsukawa, Yuichi*; Ishioka, Noriko*

no journal, , 

no abstracts in English

Oral presentation

Production of Sc-47 for cancer therapy using accelerator neutrons

Tsukada, Kazuaki; Hashimoto, Kazuyuki*; Hashimoto, Shintaro; Asai, Masato; Hatsukawa, Yuichi*; Saeki, Hideya*; Kawabata, Masako*; Ota, Akio*; Motomura, Arata*

no journal, , 

no abstracts in English

Oral presentation

Evaluation of Lu-177 production in the research reactor JRR-3

Fujino, Shunsuke; Hashimoto, Kazuyuki; Saeki, Hideya*; Kawauchi, Yukimasa*; Kawabata, Masako*; Chiba, Yusuke

no journal, , 

Lutetium-177 (Lu-177)is a medical radioisotope used in approved radiopharmaceutical "Lutathera" to treat neuroendocrine tumours. And it is one of the promising radionuclides for new therapeutic radiopharmaceuticals. However, Lu-177 is dependent on imports from overseas, and there are concerns that transportation problems etc. may affect domestic distribution and development of new pharmaceuticals. In order to confirm whether JAEA can produce a portion of the Lu-177 for research, we conducted a production test of Lu-177 using JRR-3.

Oral presentation

Production of $$^{67}$$Cu for cancer therapy with accelerator neutrons by deuterons

Hashimoto, Kazuyuki; Kawabata, Masako*; Saeki, Hideya*; Sato, Shunichi*; Tsukada, Kazuaki; Hatsukawa, Yuichi; Nagai, Yasuki; Watanabe, Satoshi; Ishioka, Noriko

no journal, , 

no abstracts in English

Oral presentation

Recovery and purification of $$^{99m}$$Tc isolated from $$^{99}$$MoO$$_{3}$$3 using a thermal separation technique

Kawabata, Masako*; Hashimoto, Kazuyuki; Motoishi, Shoji*; Saeki, Hideya*; Shiina, Takayuki*; Ota, Akio*; Takeuchi, Nobuhiro*; Nagai, Yasuki

no journal, , 

no abstracts in English

Oral presentation

R&D on $$^{99}$$Mo/$$^{99m}$$Tc separation-concentration apparatus based on solvent extraction and column chromatography

Tsuchiya, Kunihiko; Suzuki, Yoshitaka; Nishikata, Kaori; Shibata, Akira; Nakamura, Natsuki; Tanase, Masakazu*; Shiina, Takayuki*; Ota, Akio*; Kawabata, Masako*; Takeuchi, Nobuhiro*

no journal, , 

no abstracts in English

Oral presentation

Production method development of cancer therapeutic $$^{67}$$Cu using thermoseparation for cancer therapy

Ota, Akio*; Kawabata, Masako*; Motoishi, Shoji*; Saeki, Hideya*; Hashimoto, Kazuyuki*; Tsukada, Kazuaki; Hatsukawa, Yuichi*; Nagai, Yasuki*

no journal, , 

$$^{67}$$Cu and $$^{64}$$Cu are recognized to be promising radioisotopes for cancer therapy and diagnosis in nuclear medicine. It is possible to produce both $$^{67}$$Cu and $$^{64}$$Cu using accelerator neutrons from the zinc sample with different isotopic enrichment level, therefore the same separation procedure can be applied for both radioisotopes. Three-step-column separation chemistry was previously reported to separate $$^{67}$$Cu from the irradiated zinc sample. This paper reports that newly developed thermo-separation system to remove the bulk zinc from the sample using a difference in vapor pressure between Zn and Cu.

31 (Records 1-20 displayed on this page)