Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Liu, Y.*; Miyata, Noboru*; Miyazaki, Tsukasa*; Shundo, Atsuomi*; Kawaguchi, Daisuke*; Tanaka, Keiji*; Aoki, Hiroyuki
Langmuir, 39(29), p.10154 - 10162, 2023/06
Times Cited Count:4 Percentile:62.38(Chemistry, Multidisciplinary)Yamaguchi, Ko*; Kawaguchi, Daisuke*; Miyata, Noboru*; Miyazaki, Tsukasa*; Aoki, Hiroyuki; Yamamoto, Satoru*; Tanaka, Keiji*
Physical Chemistry Chemical Physics, 24(36), p.21578 - 21582, 2022/09
Times Cited Count:9 Percentile:77.49(Chemistry, Physical)Miyazaki, Tsukasa*; Miyata, Noboru*; Yoshida, Tessei*; Arima, Hiroshi*; Tsumura, Yoshihiro*; Torikai, Naoya*; Aoki, Hiroyuki; Yamamoto, Katsuhiro*; Kanaya, Toshiji*; Kawaguchi, Daisuke*; et al.
Langmuir, 36(13), p.3415 - 3424, 2020/04
Times Cited Count:17 Percentile:62.71(Chemistry, Multidisciplinary)Miyazaki, Tsukasa*; Miyata, Noboru*; Asada, Mitsunori*; Tsumura, Yoshihiro*; Torikai, Naoya*; Aoki, Hiroyuki; Yamamoto, Katsuhiro*; Kanaya, Toshiji*; Kawaguchi, Daisuke*; Tanaka, Keiji*
Langmuir, 35(34), p.11099 - 11107, 2019/08
Times Cited Count:25 Percentile:69.23(Chemistry, Multidisciplinary)Kawaguchi, Munemichi; Doi, Daisuke; Seino, Hiroshi; Miyahara, Shinya
Journal of Nuclear Science and Technology, 53(12), p.2098 - 2107, 2016/12
Times Cited Count:6 Percentile:47.31(Nuclear Science & Technology)A sodium concrete reaction (SCR) is one of the important phenomena to cause the structural concrete ablation and the release of H gas in the case of sever accident of sodium cooled fast reactors. In this study, the long-time SCR test had been carried out to investigate the self-termination mechanism. The results showed the SCR terminated even if the enough amount of Na remained on the concrete. The quantitative data were collected on the SCR terminating such as temperature and H generation. The reaction products, which became the small solids in liquid Na were transferred with slurry state by generated H bubbles. Though the Na transfers actively and ablated the concrete surface with the high H generation rate, the mass exchange coefficient defined as decreased and the reaction products settled gradually with decreasing the H generation rate. Therefore, the Na concentration decreased at the reaction front and resulted in the SCR terminating naturally.
Kawaguchi, Munemichi; Doi, Daisuke; Seino, Hiroshi; Miyahara, Shinya
Proceedings of 23rd International Conference on Nuclear Engineering (ICONE-23) (DVD-ROM), 6 Pages, 2015/05
CONTAIN-LMR code is an integrated analysis tool to predict the consequence of severe accident in a liquid metal fast reactor. A sodium-concrete reaction is one of the most important phenomena, and Sodium-Limestone Concrete Ablation Model (SLAM) has been installed into the original CONTAIN code. The SLAM treats chemical reaction kinetics between the sodium and the concrete compositions mechanistically, the application is limited to the limestone concrete. In order to apply SLAM to the siliceous concrete which is an ordinary structural concrete in Japan, the chemical reaction kinetics model has been improved. The improved model was validated to analyze a series of sodium-concrete experiments which were conducted in Japan Atomic Energy Agency. It has been found that relatively good agreement between calculation and experimental results is obtained and the CONTAIN-LMR code has been validated with regard to the sodium-concrete reaction phenomena.
Kawaguchi, Munemichi; Doi, Daisuke; Masuyama, Daisuke; Seino, Hiroshi; Konishi, Kensuke; Miyahara, Shinya
no journal, ,
As the purpose of investigation on terminating mechanism of Na-concrete reaction, the long-time test in which Na continued to be heated than threshold temperature was conducted. Under the condition that enough amount of Na existed and continued to be heated, we confirmed that the reaction stopped.
Suzuki, Akihiro*; Endo, Yoichi*; Inagaki, Yaohiro*; Arima, Tatsumi*; Muroya, Yusa*; Endo, Keita*; Watanabe, Daisuke*; Matsumura, Tatsuro; Ishii, Katsunori; Kawaguchi, Koichi
no journal, ,
no abstracts in English
Uno, Masayoshi*; Ohno, Shuji; Kawaguchi, Munemichi; Doi, Daisuke; Tsukimori, Kazuyuki
no journal, ,
no abstracts in English