Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Initialising ...
Kawahara, Takahiro; Suda, Shoya; Fujikura, Toshiki; Masai, Seita; Omori, Kanako; Mori, Masakazu; Kurosawa, Tsuyoshi; Ishihara, Keisuke; Hoshi, Akiko; Yokobori, Tomohiko
JAEA-Technology 2023-020, 36 Pages, 2023/12
We have been storing drums containing radioactive waste (radioactive waste packages) at waste storage facilities. We have been managing radioactive waste packages along traditional safety regulations. However, over 40 years has passed from a part of them were brought in pit-type waste storage facility L. Most of them are carbon steel 200 L drums, and surface of them are corroded. For better safety management, we started to take drums out from the pit and inspect them in FY 2019. After each inspection, we repair them or remove the contents of the drum and refill new drums if necessary. In this report, we will introduce the planning, the review of the plan, and the trial operation of this project.
Tsuchimochi, Akari; Suda, Shoya; Fujikura, Toshiki; Kawahara, Takahiro; Hoshi, Akiko
JAEA-Technology 2021-018, 37 Pages, 2021/10
A large amount of radioactive waste has been generated in the process of research and development in Nuclear Science Research Institute. We store the equivalent of 130,604 drums (200L) of that in our storage facilities (as of March 31, 2021) and have been developing "Radioactive Waste Information Management System" to manage them for disposal. The system started designing in FY2007 and has been in operation since FY2012. After the start of operation, it has been repaired as appropriate. In this report, we summarized the development and improvement of the system.
Ishihara, Keisuke; Kanazawa, Shingo; Kozawa, Masachiyo; Mori, Masakazu; Kawahara, Takahiro
JAEA-Technology 2017-002, 27 Pages, 2017/03
At radioactive waste management facilities in the Nuclear Science Research Institute, solid radioactive wastes are stored by using containers such as 200L drums and pallets to tier containers in 2 to 4 stacks in the height direction in waste storage facilities (Waste Storage Facility No.1, Waste Storage Facility No.2 and Waste Size Reduction and Storage Facility). On March 11, 2011, the Great East Japan Earthquake was happened, and some waste packages dropped from their pallets and large number of waste packages moved from their original position and inclined due to the influence of the earthquake in the waste storage facilities. There was no experience of rearrangement works to set those dropped and unbalanced waste packages in their original position and it was necessary to prepare detailed work procedures and progress for this task to prevent the occurrence of industrial accidents. Therefore, we prepared detailed work manual and repeatedly carried out mock-up test. And then, we started rearrangement work from April 2011 after confirmation of workers skill and adequacy of the work manual. Finally, all rearrangement works for stored waste packages took about four and half years and were completed in September 2015 without any accident and shutdown of storage function. This report summarizes the countermeasures to reduce exposure doses of workers and to prevent the occurrence of industrial accidents during the rearrangement works.
Takamatsu, Misao; Kawahara, Hirotaka; Ito, Hiromichi; Ushiki, Hiroshi; Suzuki, Nobuhiro; Sasaki, Jun; Ota, Katsu; Okuda, Eiji; Kobayashi, Tetsuhiko; Nagai, Akinori; et al.
Nihon Genshiryoku Gakkai Wabun Rombunshi, 15(1), p.32 - 42, 2016/03
In the experimental fast reactor Joyo, it was confirmed that the top of the irradiation test sub-assembly of "MARICO-2" (material testing rig with temperature control) had been broken and bent onto the in-vessel storage rack as an obstacle and had damaged the upper core structure (UCS). This paper describes the results of the in-vessel repair techniques for UCS replacement, which are developed in Joyo. UCS replacement was successfully completed in 2014. In-vessel repair techniques for sodium cooled fast reactors (SFRs) are important in confirming its safety and integrity. In order to secure the reliability of these techniques, it was necessary to demonstrate the performance under the actual reactor environment with high temperature, high radiation dose and remained sodium. The experience and knowledge gained in UCS replacement provides valuable insights into further improvements for In-vessel repair techniques in SFRs.
Ito, Hiromichi; Suzuki, Nobuhiro; Kobayashi, Tetsuhiko; Kawahara, Hirotaka; Nagai, Akinori; Sakao, Ryuta*; Murata, Chotaro*; Tanaka, Junya*; Matsusaka, Yasunori*; Tatsuno, Takahiro*
Proceedings of 2015 International Congress on Advances in Nuclear Power Plants (ICAPP 2015) (CD-ROM), p.1058 - 1067, 2015/05
In the experimental fast reactor Joyo (Sodium-cooled Fast Reactor (SFR)), it was confirmed that the top of the irradiation test sub-assembly had bent onto the in-vessel storage rack as an obstacle and had damaged the upper core structure (UCS). There is a risk of deformation of the UCS and guide sleeve (GS) caused by interference between them unless inclination is controlled precisely. To mitigate the risk, special jack-up equipment for applying three-point suspension was developed. The existing damaged UCS (ed-UCS) jack-up test using the jack-up equipment was conducted on May 7, 2014. As a result of this test, it was confirmed that the ed-UCS could be successfully jacked-up to 1000 mm without consequent overload. The experience and knowledge gained in the ed-UCS jack-up test provides valuable insights and prospects not only for UCS replacement but also for further improving and verifying repair techniques in SFRs.
Kawahara, Yutaka*; Sekiguchi, Takahiro*; Nishikawa, Yukihiro*; Nagasawa, Naotsugu
Nihon Shiruku Gakkai-Shi, 23, p.67 - 69, 2015/03
Silk aerogel has been prepared from liquid silk, and the influences of the ray-irradiation on its mechanical property have been investigated. The formation of crosslinking structure in the sericin component by the ray-irradiation should induced the hardening of the silk aerogel.
Son, N. T.*; Trinh, X. T.*; Lvile, L. S.*; Svensson, B. G.*; Kawahara, Kotaro*; Suda, Jun*; Kimoto, Tsunenobu*; Umeda, Takahide*; Isoya, Junichi*; Makino, Takahiro; et al.
Physical Review Letters, 109(18), p.187603_1 - 187603_5, 2012/11
Times Cited Count:219 Percentile:98.15(Physics, Multidisciplinary)Suda, Shoya; Masai, Seita; Kawahara, Takahiro; Fujikura, Toshiki; Hoshi, Akiko; Wakai, Eiichi; Kondo, Keietsu; Nishimura, Akihiko; Minehara, Eisuke*
no journal, ,
no abstracts in English
Suzuki, Nobuhiro; Ito, Hiromichi; Sasaki, Jun; Okawa, Toshikatsu; Kawahara, Hirotaka; Kobayashi, Tetsuhiko; Sakao, Ryuta*; Murata, Chotaro*; Tanaka, Junya*; Matsusaka, Yasunori*; et al.
no journal, ,
no abstracts in English
Ota, Katsu; Ito, Hiromichi; Ushiki, Hiroshi; Yoshihara, Shizuya; Tobita, Shigeharu; Kawahara, Hirotaka; Hara, Masahide*; Okazaki, Hiroyoshi*; Tanaka, Junya*; Tatsuno, Takahiro*
no journal, ,
no abstracts in English